é NEW LEVEL OF HIERARCHY
u NEW LEVEL OF HIERARCHY
Z NEW LEVEL OF HIERARCHY
9 NEW LEVEL OF HIERARCHY
NEW LEVEL OF HIERARCHY
NEW LEVEL CF HIERARCHY
NEW LEVEL CF HIERARCHY
NEwW LEVEL OF HIERARCHY
NEW LEVEL OF HIERARCHY

> NEW LEVEL OF HIERARCHY
‘0 NEW LEVEL OF HIFERARCHY
* 3 NEW LEVEL OF HIERARCHY
2
3

Marvin L. Manheim

NEW LEVEL OF HIERARCHY
NEW LEVEL OF HIERARCHY
o NEW LEVEL OF HIERARCHY
2 NEW LEVEL OF HIERARCHY
b NEW LEVEL OF HIERARCHY
® NEW LEVEL OF HIERARCHY
o NEW LEVEL OF HIERARCHY
= NEW LEVEL OF ‘HI'ERARCHY
i NEW LEVEL OF HIERARCHY
2 NEW LEVEL OF HIERARCHY
2 NEW LEVEL OF HIERARCHY
 NEW LEVEL OF HIERARCHY
g NEW LEVEL OF HIERARCHY
" NEW LEVEL OF HIERARCHY
5 NEW LEVEL OF HIERARCHY
2 NEW LEVEL OF HIERARCHY
> NEW LEVEL OF HIERARCHY .
O NEW LEVEL OF HIERARCHY:
® NEW LEVEL OF HIERARCHY!

—

\2C4
5R2

OF A SET WITH AN ASSOCIATED
LINEAR GRAPH

- HIDECS 2: A COMPUTER PROGRAM
FOR THE HIERARCHICAL DECOMPOSITION Christopher Alexander

— i »«'..1;‘“

. _
> \«-5 S

o
\

4 &
S

RESEARCH REPORT R62-2

DEPARTMENT OF CIVIL ENGINEERING
CIVIL ENGINEERING SYSTEMS LABORATORY

HIDECS 2:
A COMPUTER PROGRAM FOR THE
HIERARCHICAL DECOMPOSITION OF A SET
WHICH HAS AN ASSOCIATED LINEAR GRAPH

by

Christopher Alexander,
Society of Fellows, Harvard University,
and
Marvin L. Manheim,

Department of Civil Engineering, M.I.T.

Publication No. 160
June, 1962

Sponsored by: Massachusetts Department of Public Works
In cooperation with: U. S. Bureau of Public Roads
Contract 1017 Mass. HPS 1(16)

School of Engineering
Massachusetts Institute of Technology
Cambridge 39, Massachusetts

Copyright 1962
by the

Massachusetts Institute of Technology

NS R,

3
%
k4t
b
3
%
%

Acknowledgaments

The research of which this report is a part was supported
by the Bureau of Public Roads of the U.S, Department of
Commerce and by the Massachusetts Department of Public Works.
The computer and associated facilities were made available by
the M.I.T. Computation Center,

The work was performed at the Civil Engineering Systems
Laboratory at M.I.T. The authors gratefully acknowledge the
suggestions and criticisms freely offered by Professors A.
Scheffer Lang, Charles L. Miller, and Paul O. Roberts; how-
ever, all statements made herein are the responsibility of

the authors.

The diagrams were prepared by Miss Candace Allen, of the
Civil Engineering Systems Laboratory.

iii

CONTENTS

I. Introduction

ITI.

A.
B.
C.

D.

ABSTRACT and introduction

Application of the program
Machine specification

References

Description of the program

A,
B.

C.

General description
Machine representation
Description of analysis algorithms

1. criterion for selecting an optimal
partition

2. selection of trial partitions

3. control algorithms

Operational details

A.
B.
C.

D.

Input
SIMPLIFIED OPERATING INSTRUCTIONS

Output

Restrictions on matrix size

Appendices

A.
B.
C.
D.
E.

F.

G.

Dictionary of variables

Dictionary of subprograms

Flow diagrams for selected subprograms
Typical input and output

The information - theoretic criterion

The maximum number of subgraphs of a graph
of given order

Listings of subprograms

Page No.

O O W w

11
14
19
2L

A B 8B B &

g A

15.
16.
17.
18,
19.
20,
21.
22,
23.
24,

FIGURES

Example of a graph and its tree

Grouping of subprograms

Sequence of data operations

The analysis subprogram

Example of a graph and its matrix representation

Machine representation of a graph and its subgraphs

Examples of INFO

Example of a graph and its lattice

Complete graphs of orders 1 - 5

Symmetric graphs

Storage control

Example of output format

GENER
SYMET
LCTRL
SCTRL

SMRMN -

LGRMN: Major units
Preliminary operations
Generate start of path

Hillclimbing - (1) outline

Hillclimbing - (2) detail of add loop
Hillclimbing - (3) detail of subtract loop
Hillclimbing - (4) end-of-path decision
Hillelimbing - (5) notes

vii

Page No.

15
16
17

25
28
33
35
38
48
c2
C3
Ch
C5
cé6
CT
c8
C9
C10
Cll
c12

C13

25.
26,
27.
28.
29.
30.
1.
g2t
33.
H.
35.
36.
37.
38.

SMRMN ¢

3§

FIGURES (Cont)
Hillclimbing - (6) algoritlm for computing RR
Hillclimbing - (7) alternative flow chart

path comparisons

Indirect addressing access to MROWS

Graph A:
Graph A:
Graph A:
Graph A:
Graph B:
Graph B:
Graph B:

The graph and its tree

Input to the program

Output - the links of the symmetricised matrix
Output - the tree

Output - links of the symmetricised matrix
Output - the tree

The tree

A subgraph with two equal partitions

A second subgraph with equal partitions

Trees and subtrees

viii

Eiﬂiﬁ&

Cly

Cl5
C16
C17
D3

D4

D5

b1
D13
D27
D31
D35
D36

e

INTRODUCTION

I.

A. ABSTRACT AND INTRODUGTION

The program discussed in this report was developed at the
Civil Engineering Systems Laboratory, M.I.T. for application to
the analysis of several problems in highway engineering. The
nature of the analytical methods and of the specifications of
the program allow for broad application to other subjects.,

The program is used to analyze the structure of a linear
graph, or topological one-complex, as it is also termed. Such
a graph consists of just two types of elements: vertices, and
non-directed links connecting specified pairs of vertices. The
input to this program is the matrix description of the graph.
According to a criterion derived from assumptions about the
graph structure and its information-theoretic properties, the
set of vertices can be divided into two or more subsidiary sets
of vertices, called subsets, so that each subset still has an
associated graph. The program performs such a partition on
the input set of vertices, and then in turn partitions the re-
sulting sets. This process is repeated, successivly decom-
posing the original vertex set into smaller and smaller subsets,
until it has been completely decomposed into its constituent
vertices.

The set of sets which resulfé from the successive parti-
tions is ordered naturally as a "tree." This tree specifies
the order in which the subsets can be recombined to produce

the original graph. In the application for which this program

was developed, the vertices of the graph represent the require.

ments of a design problem, The tree defined by the program's
output specifies an order in which the designer should consider
the requirements he tries to meet in the process of evolving a
design.

This report describes the program, the algorithms upon

which it is based, operational procedures, and certain possible
modifications.

B. APPLICATION OF THE PROGRAM

This program was developed for use in the analysis of

P — ,\‘.m,v-__..,-g—?—“'

certain types of design problems, according to the theory put
forward by Christopher Alexander, in "NOTES ON THE SYNTHESIS

s e S ST

OF FORM" (Ph.D. thesis, Harvard University, 1962). The theory
has been applied to two highway engineering problems: the
design of a highway interchange, and the selection of a loca-
tion for a highway.*

A1l design problems contain two kinds of element:

(1) Requirements

(2) Interactions between requirements.
The requirements which the design has to meet are represented
as vertices of a graph. The purpose of the design process is
to select a design (in the case of our examples, for a highway
or an interchange) which fulfills these requirements. The diffi-
culty of achieving a design which satisfies such a 1ist of re-
quirements is due to the fact that requirements conflict with
one another: some requirements place demands upon the design
which are contradictory to the demands of other requirements.
The presence of these interactions between pairs of requirements
in a specific design program is represented by links between
the vertices corresponding to the particular requirements. The
set of vertices, and the set of links together define a graph;

*See the reports on these projects by Alexander and Manheim, |
also issued by the Civil Engineering Systems Laboratory, M.I.T.:
THE DESIGN OF HIGHWAY INTERCHANGES: AN EXAMPLE OF A GENERAL METHOD l
FOR ANALYSING ENGINEERING DESIGN PROBLEMS, and THE USE OF DIAGRAMS Il
IN HIGHWAY ROUTE LOCATION: AN EXPERIMENT. (

Figure 1

EXAMPLE OF A GRAPH AND ITS TREE

&) A GRAPH
d %! 7 b

4 !
5 S 8

DY LS SRR EE

(12,3.4,5¢189)

that graph, by virtue of the correspondence between vertices and

requirements, and the correspondence between links and interactions

of requirements,represents, for the purpose of this analysis, the

structure of the design problem,
The input to the program is a graph; the output is a tree,

a hierarchical ordering of the graph's vertex set and its parti-
tioned subsets. Because of the correspondence between the graph
and the problem, the tree which is obtained by the program pro-
vides an orderly scheme for dealing with the requirements posed
by a particular problem. The tree specifies which requirements
are to be considered together and the order in which different

groups of requirements are to be combined and considered, See
Figure 1.

|
|
RS- - e AN

C. MACHINE SPECIFICATION

___——-—’_—,

This program has been debugged and run on an IBM 709 at
the M.I.T. Computation Center. This machine uses 36-bit words,
has a memory capacity of 32,767 words, and has three index
registers. The program is designed to be executed under the
control of the Fortran Monitor System in use at the Center
during the second half of 1961. For information as to pecu-
1iarities of the M.I.T. installation which might prove critical
in running this program on another machine, see further the
M.I.T. Computation Center Procedures Handbook, 1961.

The program has also been used for production runs on an
IBM 7090 at the Smithsonian Astrophysical Observatory, Cam-
bridge, under the control of an M.I.T. system tape. No changes

in the program were required.

It is not possible to give a rule for estimating the

running time required for any specific analysis.

D. REFERENCES

e ————————————

Alexander, Christopher, NOTES ON THE SYNTHESIS OF FORM.
Unpublished Ph.D. thesis. Harvard University (1962).

Alexander, Christopher and Marvin L. Manheim, THE DESIGN
OF HIGHWAY INTERCHANGES: AN EXAMPLE OF A GENERAL
METHOD FOR ANALYSING ENGINEERING DESIGN PROBLEMS.

Cambridge, Mass.: Civil Engineering Systems Labora-
tory, M.I.T. (1962).

, THE USE OF
" DIAGRAMS IN HIGHWAY ROUTE LOCATION: AN EXPERIMENT.

Cambridge, Mass.: Civil Engineering Systems Labora-
tory, M.I.T. (1962).

By
&

IT.

DESCRIPTION OF THE PROGRAM

11

This description is divided into three major sections.

The first describes the operational structure of the program,

as comprising a package of subprograms with specific functions.
This serves as an introduction to the dictionary of subprograms
in Appendix B. The second section of the description discusses
the machine representation of a graph. The third section of
the description discusses the body of the program, the algor-
ithms actually used in the analysis of graphs., These algorithms
are discussed in sufficient detail to introduce the actual pro-

gram 1listing, included as Appendix G of the report.

13

A. _OENERAL DESCRIPTION

The program consists of three groups of subprograms, The

first, or Preliminary, group prepares for the execution of
other subprograms by reading in several parameters, generatin,
other standard parameters, and setting variables which contrg)

the execution of particular loops in other subprograms., Thig

group has five subprograms: INPAR, GENER, SET8, SET9, and
SET11.

The second, or Data, group of subprograms is concerned
with reading in the binary data matrix (representing the graph
to be analyzed), and putting it in appropriate form for the
analysis. Several different operations are performed by this
set of programs: INDAT reads in the data as it is punched on
cards, CNDAT converts the inputted data from its input form
into the format in which the other subprograms can operate
upon it, and SYMET checks the data for inconsistencies which
may arise in the pre-computer preparation of the data. With
the results of the Preliminary and Data groups of subprograms,
the analysis proper can be begun,

The group of subprograms which actually performs the
analysls of the graph consists of seven programs actually in-
volved in the analysis, and six which print out the results

and comments. LCTRL is the major control program for the

Analysis group; it controls the course of the partitioning
iterations, the manner of storage of the results, and the

selection of one of two sequences of subprograms,

14

Figure 2

GROLPING OF SUBPrce RAMS

(MAIN) - Controls calling sequence of Preliminary

PRELJMINARV<<iiT
DATA INDAT -
CNDAT -
SYMET -
i LCTRL -
ANALYSIS
LGRMN -
SCTRL -
SMRMN -
REDUC -
SIMPL -
PTCLR -
OUTPRPUT PTLGR -
PTMAT -
PTLVL
PRTIN}»
PTOUT
REFERENCE COUNT -
OPERATIONS CONVT -

and Data subprograms

Called in this order:

INPAR - INputs control PARameters
GENER - GENERates auxiliary parameters and standard

working tables

SET8, SET9, SET11 - SET variables in LCTRL, LGRMN,

and REDUC to appropriate parameter values

Called in this order:

Read IN DATa
CoNdense DATa format
Check data for SYMmETry of relation matrix

Control subprogram for graphs over order 36 -
Large ConTRoL

Partitions graphs of over order 36 - LarGe RMN
Control subprogram for graphs of order 36 or
less - Small ConTRolL

Partitions graphs of order 36 or less -

SMall RMN

Prepares data for operation by SCTRL and
SMRMN - REDUCe

Performs special functions in analysis of
graphs of 36 or less - SIMPLex

Prints out results of SMRMN - PrinT CLeaR
Prints out results of LGRMN - PrinT LGRmn
PrinTs out MATrix

Print out selected comments - PrinT LeVel,
PRinT IN, PrinT OUT

COUNTs the number of one's in a machine word
Reference table for CNDAT - CONVerT

15

e A

9T

Fiauee 3

SEQUENCE. oOF DATA OPERATIONS

e INDAT ——» | INMAT

MATRIX INPUT
INDAT

RN

NWORD 1 | I ATOQX E DROWS

SYMET

[1111

anannl ATOOX E DROMS

MATRIX IN OCTAL EXFANDED
LGTH +1

FORM , INn INMAT ARRAY

MATRIX IN BINARY CONDENSED
DAT +\ FORM | STORED FOR READY ACCESS

IN DROWS ARRAY

MATRIX IN SAMEL FORM, CHECKED
ODAT ~ | FOR SYMMETRY

SVUBGRAPH ORDER > 36

SUBGRAPH ORDER < 306

el MROWS

DROWS MDOIFIED
DAT «| TO CORRESPOND
To ATOX, AND
STORED IN MROWS
ARRAY (MATAX
TABLE GIVES ACCESS

WRRRINN

REDUC

DROWS CONDENSED

[

KEY)

36+
ATOMO —_ DATA TO EQUIVALENT MATRIX
©F ORDER 3606
SCTRL
DATA MODIFIED TO
36 ¢+ CORRESPOND To ATOM,

ATOM

AND STORED IN MATA

ARRAY

FIGURE

THE. ANALYSIS SUBPROGRAMS

(ENTRY FROM DATA SUBPROGRAMS)

LCTRL

SMRMN

AT

LGRMN

ALPHA

(axn’) pTLVL | [PTLGR PTLVL

|

¥ = ENTRY POINT N SCTRL
«¢ = NOT INCORPORATED |N VERSION OF PROGRAM: OPERATIONAL IN DECEMBER , 196l
\

If the subgraph is of order greater than 36, the, LoTRy
calls LGRMN to perform the partitioning. If the order of the
subgraph is 36 or less, then LCTRL selects the seconq analygy .
sequence. In this case, the faster subprogram SMRMN ig useq 1,
partition these smaller graphs, under the control of SCTRL, ¢,
which the program control is passed from LCTRL via REDUC, REDYG
is necessary to change the format of the data from that Corres.
ponding to a subgraph of order greater than 36 to that of ons
smaller. NTRSC* and SIMPL are called by the partitioning sub.
program SMRMN under certain special conditions (Cf. Section 3,
Control algorithms.). In this sequence, SCTRL performs the
control functions similar to LCTRL, and SMRMN performs the
actual analysis, analogous to LGRMN.

These three major groups of subprograms are illustrated ip
Figure 2, together with the output or printing subprograms.
The sequence of the Preliminary and Data groups 1s as indicated
in this Figure, and in Figure 3. The more complex control of
the Analysis and Output programs is flowcharted in Figure 4,

* Not shown in Figure 2. Not operational in December, 1961.

18

B. MACHINE REPRESENTATION

Every graph which contains n vertices is in one-one
correspondence with a binary square matrix of order n, in which
the 1-th row and the i-th column both stand for the i-th vertex
of the graph. A one (1) in the ij-th cell of the matrix stands
for a link between vertex i and vertex j, and a 0 in the ij-th
cell indicates that there is no link between vertices i and j.
The principal diagonal of the matrix contains zeros, since no
vertex is linked to itself. The links are non-directional,
so the matrix is symmetrical about the main diagonal (that is,
the entry in the ij-th cell is the same as the entry in the
ji-th cell).

Each row of the matrix is a n-bit binary vector, whose
1's specify the vertices from which there is a link incident
on the vertex corresponding to the row. Since the IBM 709 and
7090 have a word length of 36 bits, a single computer word is
capable of describing one row of any binary matrix whose order
is less than 37. Hence, for a graph which contains 36 vertices
or less, an array of 36 words describes the graph completely.
Cf. Figure 5.

For a graph which contains more than 36 variables, more
than one word is necessary for the description of one matrix
row, and a correspondingly larger array, in which blocks of
words stand for single rows, is needed to describe the graph

completely.

19

Figure §

z
=
-
£
[~
E
E
E
2
<
£
%
L&)
-t
5
z
:

GRAPH

-
-
—

8)

pdt
o
=
=
4
ul
4
(AW
w
(o4
2%
o
<
=
o

—

clole

Oiololtioli iy

110[111iololowlo
oitiololiigl]lolo

111j0i0itiolo!

vich |y lolole]
ook ioloipitt o

ool lolnltislt]l
SXinideliil!

Qilieii

1
E A

yeRnces:li|2|34i5]6|7RQ

3
4

S
3

C) MACHINE REPR ESENTATION

3¢ BINARY OIGMTS PER WORD

oLoo ool Sl of of O
0] o] 9 o] o] O] of o] o] ¢ o] 9] 9
o] o Olc|vo ol9
ol o 9l) a o] O
oo ol Y o]u
o (5 . K
o] o <
of © O
1ol 1T 10| o[0] ¢ o] ¢
0] o] o] o] o] o 6] o] o] °| 5] 0
COEEREEEALRNUD
FREEEERMNERNER
o] of 9 o] o] 9 o O]] of 6] T 0| ©
O] o o] o] 9f o] 9] ¢]] o] Of ©] @
0] o] o] O]] O] O] o] O] o o] O © ol ¢
ol d -]o-]1-1°19] o] o] o] ¢[© h Y
o 0] O] ol =1=1ol~= o] O o] of (] 9]] o
ol o -] o] O] - ~1-19]9 o 0] o e
ool ol ool ol =] =lol 0| < o A el ool ol C
—ol=I=I<s o|-10] o] 9 9 of 0] ¢ dl o
“I-1old= o] &f of o] o] o] o] 5[ol ol o] ¢] o
ol -0 o ol -1 0 9 0] ¢ | ¢] O[O} o] 0
% —“Hdo [) o[SJ o] of U of of ¢ Ul
ol-1d =4 0]o ol Vlo] B¢l ofofefel o
~NOTWI N0~ s g
S e Lo K M)
aaQ
it :
o 3

ARl) ® ATy we Wargeegy AN MY Ay AN

20

Figure 6

MAGHINE REPRESENTATION OF A GRAPH AND ITS SUBGRAPHS

4d) THE GRAPH

b) A PARTITION OF THE GRAPH INTO TWO SUBGRAPHS

2 3 l 7 6
|
4 ! |
|
5 | 9 8
SUBGRAPH A I SUBGRAPH B

c) MACH|INE REPRESENTATION

3¢ B\NARY OIGITS
CTT — A

-

GRAPH "D L il 1 [Jolo]ololo]o

SUBGRAPH A i [y [ololololololole o[o[o]o

SURGRAPH B olo o\ [\ [\ []o]o oo olo
NOTE THAT ANY TWO OF THESE THREE

WORDS ARE SUFFICIENT To SPECIFY
THE THIRD, SINCE

GRAPH = UNI|ON oF (A,B)

21

Why | Am Not Golng te Buy s Compiter

Homideds Borry

Similarly, when it comes to partitioning the graph, machin,
words (binary vectors) can be used to describe any given partj.
tion. A partition divides the vertex set of a given graph int,
two or more subsets. If the number of subsets is precisely tuy
(as it is throughout the program*), then the partition is un-
iquely specified by either of the two subsets, since the other
subset 1s its complement with respect to the set being parti-
tioned. An n-bit binary vector, with 1's indicating the presence
of a vertex, and 0's indicating the absence of a vertex, can
represent any such set. Again, if the number of vertices in

the set being partitioned is not greater than 36, only one
machine word is necessary to describe it. If the number of verw
tices in the set is greater than 36, several words per set are
necessary. Cf. Figure 6.

For the sake of computational simplicity, the number of
words used is always integral. As a result, the squareness of
the matrix means that the matrix storage always contains inte-
gral multiples of 36 words. Thus, if the matrix is of order
50, two words per matrix row are used, the last 22 entries in
these vectors simply become zeros for the duration of the pro-
gram, and of the (72).(2) = 144 words, the last (22).(2) = &
are entirely zero. This is illustrated in Figure 6.

Secondly, again for computational simplicity, and to save
computer time, a distinction is made between cases which can

*Except for operations with NTRSC and its associated sub-
programs. Cf. Section 3, Control algorithms.

22

be dealt with by a single word (i.e. those where the graph contains
36 vertices or less, so that the order of the vectors required is
36 or less), and those cases which cannot be dealt with by single
words, Two different sequences of subprograms are used to deal
with these two cases and transfer control back and forth between
them, as described above.

Finally, to make the use of index registers and indirect
addressing as simple as possible, all sequences of stored in-

formation are stored backwards, from their symbolic address.

23

Yo My o T nmgairer

C. DESCRIPTION OF ANALYSIS ALGORITHMS

The algoritims upon which the analysis subprograns e based
can be divided into three groups:
1. criterion- the computation of the measure by whicp the
nstrength” of a partition is evaluated
2. sampling- the selection of possible partitions to pe eval.
uated
3. control- allocation and record-keeping with regard t, S
age of partition results; declisions about sequence of partitio,.

ing, when to stop partitioning, and printing out of resuits,

1. The criterion for selecting an optimal partition

The particular criterion upon which this program is bageq
is derived from information - theoretic considerations., The pur.
pose of the criterion is to select one particular decomposition
of a graph as best. To discuss the particular criterion, it is
necessary to define the basis upon which links are determined,

We assume that each link of the graph represents a statis.
tical correlation between the variables associated with its end-
points (end-vertices). It follows, from considerations of in-
formation theory, that the information transmitted from one
subset to the other can be used as a criterion for an optimal
partition. As shown in Appendix E, it is desired to obtain a
partition of the graph's vertex set into two sets which have
the least possible information transmitted across the partition.

24

Figure 7

EXAMPLES OF INFO

25

3 A
L4 f \
T | N
| I N
)
l
! |
—+ — — S s B
' |
f l
[
& A
NUMBER OF NODES = ORDER = 9
NISQL = (9) (8)(Y) =36
TOTAL = (14
NO, oF VERTICES
ON EACH SDE OF
NO. OF LUNK RANKING
PARTITION QR 2 M"RT'T'IQN LERLED = BEST
AR 2. Y 4 —-.104 |
B8 % 3 ¢ —. 003 4
e 4 I 8 + .004 5
DD 23 l 3 - 000 6\
EE. %) 4 5 — .07l 23
n) ¢
2 TOTAL - Wi ’_N S
STR = % (NSQ1_>MN g 6% q
{MN (NSQ1 - MN) oy
INFO = (STR)(|STR|)
WA ESD)
-v- = E
Y 5 AN ’
b, \('3‘(») 20 g bl 5 20— = S
2.0 ("»(o b ’é / V ¢

The mathematical expression of this information, and its popn_
malization, as discussed in Appendix E, lead to the fOllouj_ng
specific measure of the "strength" of any partition: for g
partition which divides the set of vertices into two subsets op
sizes M and N (M + N = NBIT), the strength of the partition i,

measured by
e (m&) o
STR = S

NSQL-MN

where: RR = number of links connecting any vertex of M with
any vertex of N

TOTAL = total number of links in the graph
NSQL = maximum possible number of 1links in the graph

it 2NBIT-1] (_”)_C_i_]_'g, n = no ol e

MN = (M) x (N).
For computational purposes, the actual measure used is INFO, a
monotonic function of STR: INFO is the square of STR, but with
the sign of STR preserved. Cf. Figure 7.

The program's central algorithm searches for that partition

of a graph's vertex set for which INFO is algebraically minimal, *

2. The selection of trial partitions

As shown above, for a given vertex set, a partition is un-
iquely determined by giving one of its component subsets, since
the other subset is always the complement of the first, with res-
pect to the vertex set under consideration. Let INFO be defined
for a given subset, as that value of INFO defined for the parti-

tion which this subset detemmines. Then, the task of finding a

*INFO may be negative, and usually is for minimal points.

26

partition for which INFO is minimum, is the same as the task of

finding a subset for which INFO is minimum. However, the number
of possible partitions of a vertex set, being § the total number
of subsets, is, in the case of n vertices, 1.2" = 21, For
graphs of any interest, n is usually large (at least of order
100, say)*, so that the number of possible partitions becomes
very large indeed. This makes it impossible to examine every
possible subset, and then to select precisely that one for which
INFO is minimum. Instead we must somehow sample the set of all
possible subsets, and then use these sample subsets as starting
points in a hill-climb search procedure.

More precisely, sampling produces a starting trial subset,
which i1s then modified iteratively, by one point at a time, in
an attempt to find subsets whose INFO is lower. This continues
until no modification of the subset by one vertex improves the
value of INFO. The algorithm thus has three components: the
choice of a starting subset; its modification under the rule
that INFO has to improve as we go along; and the termination of
the modification, at that point where no improvement is possible.

The 2" possible subsets of the vertex set of n vertices
form what is called a lattice. The arrangement of these sub-
sets in the lattice depends upon the simple notion of adjacency
between two subsets. Two subsets are called adjacent if one can
be made from the other by adding or subtracting a single vertex

from it. This is illustrated in Figure 8, where the adjacent

I

*The analysis of the highway interchange problem used a
graph with 112 vertices. Cf. Alexander and Manheim, THE DESIGN
OF HIGHWAY INTERCHANGES.

27

partition for which INFO is minimum,

is the same as the task of

finding a subset for which INFO is minimum, However, the number
of possible partitions of a vertex set, being % the total number
of subsets, is, in the case of n vertices, .27 = =1, Por
graphs of any interest, n is usually large (at least of order
100, say)*, so that the number of possible partitions becomes
very large indeed. This makes it impossible to examine every
possible subset, and then to select precisely that one for which
INFO is minimum., Instead we must somehow sample the set of all
possible subsets, and then use these sample subsets as starting
points in a hill-climb search procedure.

More precisely, sampling produces a starting trial subset,
which is then modified iteratively, by one point at a time, in
an attempt to find subsets whose INFO is lower. This continues
until no modification of the subset by one vertex improves the
value of INFO. The algorithm thus has three components: the
choice of a starting subset; its modification under the rule
that INFO has to improve as we go along; and the termination of
the modification, at that point where no improvement is possible.

The 2" possible subsets of the vertex set of n vertices
form what is called a lattice. The arrangement of these sub-
sets in the lattice depends upon the simple notion of adjacency
between two subsets. Two subsets are called adjacent if one can
be made from the other by adding or subtracting a single vertex

from it. This is illustrated in Figure 8, where the adjacent

*The analysis of the highway interchange problem used a
graph with 112 vertices. Cf. Alexander and Manheim, THE DESIGN
OF HIGHWAY INTERCHANGES.

27

Figure 8
EXAMPLE OF A GRAPH AND ITS LATTICE

a) GRrRAPH

BEST

PARTITION
! |
B s

2 |
|

4 b) LATTICE:
®= SUBGRAPH CONSISTING ofF VERTICES |2

o ©= OPTIMAL PARTITION

The number beside the subset identification indicates the corresponding

c)

value of INFO.

Note that the lattice is the same for all graphs with four vertices.
However, the values of INFO (and therefore the arrows) will depend on
the specific graph links associated with the four vertices.

28

subsets are connected by a line,

Since every subset has a value
of INFO attached to it, we can apo assoclate an arrow with every

line in the lattice, showing by its direction which of the two

subsets concerned has the lower value of INFO. As a convention

the arrow points toward the subset whose INFO is lower

The search for better subsets now traces out a path over

these lattice lines, always going in the direction of the arrows.

There must be subsets which have NO arrows leaving them. As soon

as the search encounters one of these subsets, it terminates.

There are two points of the lattice which are singular,

and must therefore be ignored, These are the full set and the

empty set, which both correspond to that imaginary partition that

separates the entire set from nothing., Clearly this partition is

of no interest. This is expressed mathematically by the fact
that for these two subsets, INFO is indetérminate, being 0/0.
Arrows cannot be associated with any lattice lines connected to
these points; in the program the hill-climbing procedure ignores
them.

For the sake of simplicity, we may introduce an analogy, in

which subsets are the points of a surface. The altitude of the
surface at any point has the value of the INFO of the corres-
ponding subset, and the arrows are always pointing downhill. In
this case, the search is equivalent to dropping a ball on the
surface, and watching to see where it rolls to.

The analogy makes it clear how critical the choice of

starting points can be. The purpose of the search is to find

29

the very lowest point of the surface. It may well be, hewever,

that the ball finds its way into some valley, not the lowest,
but cannot get out again. This is the problem of local minima
which occurs in all hill-climbing methods.

In other words the assumption underlying the hill-climbing
procedure is that the surface is relatively smooth: that is,
the minima whose values are low have correspondingly large
"drainage basins," and will therefore be reached from a large
number of other points on the surface, while minima whose values
are relatively high and undesirable, have relatively small drain-
age basins. This assumption implies that the best minimum will
actually be reached by at least one path, even if the number of
starting points is rather small.

There is a difficulty, however. For this procedure to work,
the starting points should be equally spaced over the surface,
Unfortunately, there is no obvious way of finding points which
are equidistantly distributed over a lattice. Finding such a
collection of points is equivalent to finding a collection of

corners of an n-dimensional cube which are evenly spaced, for
edge distance, over the cube. This is a very difficult problem
which we have not attempted to solve. Instead, a randomly gen-

erated vector is used to select the starting points, *

*The selection of an actual starting point is achieved by
taking a given random set of vertices, represented by the octal
words RANDM, and adding, each time a new sample starting point
is to be generated, another random word, DIFF., The resultant
random word(s) are then tested to select those vertices which
are in the graph, such that those vertices of the graph which
are also in the generated random word(s) become the elements

of the starting partition.

'I.--._--——————— S

The trial subset so generated is called TSET. The path-
finding component of the algorithm proceeds by testing each
vertex which is not in TSET, adding it to TSET and determining
if the set so found would yield a lower INFO. If not, then
another vertex is selected and tested for addition. If the
tentative modification does achieve a lower INFO, that
modification is stored.* All the vertices not already in
TSET are tested for addition in this manner, one by one.

Retaining the same TSET, each vertex included in TSET
is tested to determine if removing that vertex from TSET
would result in a better partition.** The best partition
discovered in this subtraction loop is then compared with
the best discovered in the addition loop, and the better of
these two is compared with the partition represented by TSET.
If the addition or subtraction of one vertex results in a par-
tition with a smaller value of the corresponding INFO, that

partition replaces TSET, and the procedure is repeated. In

this manner, a path through the lattice of possible partitions

is traced out by additions or subtractions of one vertex at a

time,

*Since the addition test selects the vertices in the
numerical order of their labels, i.e., 1,2,3,4,... this pro-
cedure results in a slight bias towards the lowest-numbered
vertices.

**The vertices are considered in order of ascending numer-
ical label in the subtract loop, so that here too there is a
bias toward lowest-numbered vertices. Furthermore, a partition
found in the subtract loop must be better than one found in
the add loop, not just equal, in order to replace it. There-
fore, an additional bias exists in favor of partitions which
add vertices, at the expense of partitions of equal strength
but which are formed from TSET by subtracting vertices.,

31 (

