

!

Foreword

A year or two ago, I was astonished to get several letters from di

ff

erent people in
the computer science field, telling me that my name was a household word in the
software engineering community: specifically in the field of object-oriented tech-
nology. I had never even heard of object-oriented programming, and I had abso-
lutely no idea that computer scientists knew my work, or found it useful or
interesting; all this was a revelation to me. It was a pleasant revelation, but one
that I did not really grasp at first; nor did I think much about it. I assumed the
people who wrote to me were exaggerating anyway, out of politeness.

Then, one of these people, Marc Sewell from IBM in Atlanta, came to see me
and told me much the same, to my face, in a discussion over co

ff

ee. Naturally, I
assumed he too was exaggerating. When I expressed my surprise and doubts
about the depth of this “alexandrian patterns movement,” he told me that in any
given issue of

The Journal of Object-Oriented Programming

, there was almost cer-
tain to be some mention of my name. To prove it the next day he came with the
current issue of The Journal of Object-Oriented Programming. There was in it,
an article by Richard Gabriel, the essay that appears in this book as the chapter
entitled “The Bead Game, Rugs, and Beauty.”

I sat down to read the article; and for the first time, became truly interested in
this connection. What was fascinating to me, indeed quite astonishing, was that in
his essay I found out that a computer scientist, not known to me, and whom I had
never met, seemed to understand more about what I had done and was trying to
do in my own field than my own colleagues who are architects.

Indeed, a cool factual appraisal or summary of my lifelong struggle with the
problems of what to do in the field of architecture, has rarely been written objec-
tively in the architectural literature. Architects, many of them agonizingly tied to a
field which does not work, are mentally and emotionally tied up in the problems
of the discipline, are often shocked by what I have said (either because it makes

vi

/

 F

OREWORD

them angry or because it makes them ecstatic), and have therefore rarely given
large-scale cool appraisals of what I have written. Principally, I think this is
because what I have to say, once taken seriously, has such enormous basement-
shaking results for architecture that it irrevocably changes the field.

Yet here in Richard Gabriel’s essay, far away from the internecine struggles of
architecture, and without the sense of panic that so often accompanies reviews of
my work in the architectural press, was sober stu

ff

, written by a person who
clearly understood it profoundly, and had taken the trouble to make himself
familiar with a great deal of what I have done and written.

I found that the scientific and artistic problems I have described in my work,
are being assessed, reported, without bias or prejudice, just as a matter of fact,
with failures and successes given equal weight, and with the same feelings that I
myself have about the task in hand, the experiments, the attempts, what works,
what doesn’t work—with discussion of what works and what doesn’t written in
rather plain English. It was tremendously refreshing, and stimulating. I was by
now astonished and delighted.

That was about a year ago. Then, out of the blue, Bill Zobrist, an editor at
Oxford University Press, sent me this book and asked me to read it and comment
on it.

Now, I am on di

ff

erent ground. Suddenly the tables are turned, and I have to
struggle to make out what is actually being

said

 in the field of object technology
and software engineering. Can I understand it? Within my limited understanding,
does it make sense? Is the analogy, metaphor, or extension, from architecture to
programming legitimate? Suddenly, from being reviewed, I became the reviewer.

In architecture, the question, the question I have been asking is very simple:
“Can we do better? Does all this talk help to make better buildings?”

Are the questions being raised by Richard Gabriel equally straightforward? I
think they are not. His questions, though in simple words, are not only about this
kind of programming. He seems, to me, to be trying to jolt the software engineer-
ing community into an entirely new state of awareness, trying to create the possi-
bility of a new field, more elevated, more marvelous, without knowing whether
this is possible, because it has never been done before.

In this sense, as he describes himself, he is a Dr. Johnson, a “critick,” not neces-
sarily a practical man, but a goad, a spiritual leader, a man who sees possibilities
and the glimpse of some distant promised land in software engineering.

But still a fundamental question of practicality must lie at the forefront. Does
all this thought, philosophy, help people to write better programs? For the insti-
gators of this approach to programming too, as in architecture, I suppose a criti-
cal question is simply this: Do the people who write these programs, using
alexandrian patterns, or any other methods,

do they do better work?

Are the pro-
grams better? Do they get better results, more e

ffi

ciently, more speedily, more

F

OREWORD

/

 vii

profoundly? Do people actually feel more alive when using them? Is what is
accomplished by these programs, and by the people who run these programs and
by the people who are a

ff

ected by them, better, more elevated, more insightful,
better by ordinary spiritual standards?

Here I am at a grave disadvantage. I am not a programmer, and I do not know
how to judge programs. But, speaking only about what appears in this book, I
must confess to a slight— reluctant—skepticism. I have not yet seen evidence of
this improvement in an actual program. Of course my ignorance is such that I
would not have good instincts, at first anyway, about a given bit of code, not even
enough to be able to say “This is a beautiful program, this one less so.” I do not
therefore ask these probing questions in a negative or hostile spirit at all. I ask
them, because I hope, and believe it may propel readers of this book, program-
mers themselves, into trying to do better. But I cannot tell, as yet, whether the
probing questions asked in this book, will actually lead to better programs, nor
even what a better program

is

.

In my life as an architect, I find that the single thing which inhibits young pro-
fessionals, new students most severely,

is their acceptance of standards that are too
low

. If I ask a student whether her design is as good as Chartres, she often smiles
tolerantly at me as if to say, “Of course not, that isn’t what I am trying to do. . . . I
could never do that.”

Then, I express my disagreement, and tell her: “That standard

must

 be our
standard. If you are going to be a builder, no other standard is worthwhile. That is
what I expect of myself in my own buildings, and it is what I expect of my stu-
dents.” Gradually, I show the students that they have a

right

 to ask this of them-
selves, and

must

 ask this of themselves. Once that level of standard is in their
minds, they will be able to figure out, for themselves, how to do better, how to
make something that is as profound as that.

Two things emanate from this changed standard. First, the work becomes
more fun. It is deeper, it never gets tiresome or boring, because one can never
really attain this standard. One’s work becomes a lifelong work, and one keeps
trying and trying. So it becomes very fulfilling, to live in the light of a goal like
this.

But secondly, it does change what people are trying to do. It takes away from
them the everyday, lower-level aspiration that is purely technical in nature, (and
which we have come to accept) and replaces it with something deep, which will
make a real di

ff

erence to all of us that inhabit the earth.

I would like, in the spirit of Richard Gabriel’s searching questions, to ask the
same of the software people who read this book. But at once I run into a problem.
For a programmer, what is a comparable goal? What is the Chartres of program-
ming? What task is at a high enough level to inspire people writing programs, to
reach for the stars? Can you write a computer program on the same level as Fer-

viii

/

 F

OREWORD

mat’s last theorem? Can you write a program which has the enabling power of Dr.
Johnson’s dictionary? Can you write a program which has the productive power
of Watt’s steam engine? Can you write a program which overcomes the gulf
between the technical culture of our civilization, and which inserts itself into our
human life as deeply as Eliot’s poems of the wasteland or Virginia Woolf ’s

The
Waves

?

I know Richard Gabriel opens these kinds of doors. I feel, blowing through
these pages, a breeze, an inspiration which could begin to make a programmer
ask herself these kinds of questions, ones that reach for the stars.

But so far, I do not yet see the programs themselves to fulfill this promise. So
far, there is still the danger that all this paraphernalia, all this beautiful work,
thought, and inspiration is only marginal comment on an activity which is still
static, still not actually,

as a program

, really better.

In Richard Gabriel’s next book, I would hope to see examples of programs
which make you gasp because of their beauty. And I would hope for a growing
knowledge, in the field of software engineering, of what this means.

Perhaps too, a knowledge more widespread in our culture, so that people out-
side the field, lay people like me, could also begin to grasp the beauty of pro-
grams, could have some idea of what it might mean . . . and would above all, feel
helped in their lives, on the same level that they are helped by horses, and roses,
and a crackling fire.

That—I think—has not happened yet.

Will this book make it happen? This is the critical issue above all, our ability to
make real improvement in the geometry of buildings, in the geometry of code, in
the quality of buildings, and in the quality of programs.

As I reached the end of

Patterns of Software

, I realized that my story as told by
Richard Gabriel—was incomplete in a number of important ways, which may
have direct bearing on the computer scientists struggling with just these ques-
tions.

Richard Gabriel focuses, very much, on

unsolved

 problems, on the struggle
and the path to almost ineluctable di

ffi

culties in architecture. He does not com-
ment, perhaps enough, on the fact that these problems are solvable in practice, in
fact are

being

 solved right now. The geometry of life, in buildings, which I wrote
about for 25 years, in order to attain it, is finally being attained, just now.

That is of crucial importance, because if the analogy, or parallel, between
architecture and software engineering that he has drawn in this book, has validity,
then the fact that it is solvable, must have a parallel too. If the parallel exists, then
the questions are not only inspiring, but there really are programs, code, etc.,
which have these nearly magical qualities that breath life. And programs and code
with these qualities are attainable,

now

, in our lifetime, as a practical matter in the

F

OREWORD

/

 ix

world of programming. This is a stunning conclusion, one which Richard Gabriel
has not su

ffi

ciently emphasized.

In order to better understand how these problems might be solved in software
engineering, we might look at where Richard Gabriel’s examination of my work
stops short and at the remainder of my work, particularly, the progress my col-
leagues and I have made since 1985. It is in this time period that the goal of our
thirty-year program has been achieved for the first time. We have begun to make
buildings which really do have the quality I sought for all those years. It may seem
immodest, to presuppose such success, but I have been accurate, painfully accu-
rate in my criticism of my own work, for thirty years, so I must also be accurate
about our success. This has come about in large part because, since 1983, our
group has worked as architects and general contractors. Combining these two
aspects of construction in a single o

ffi

ce, we have achieved what was impossible
when one accepts the split between design and construction. But it has come
about, too, because theoretical discoveries, considerably more potent than the
pattern language have supplemented the power of the patterns, and the way they
work, and their e

ff

ectiveness.

In 1992 a pair of articles appeared that show, in short summary form, what can
be achieved by these ideas when you bring together the roles of architect and
builder, within the framework of the ideas of

A Pattern Language

 and

The Timeless
Way of Building

.

*

The articles describe a number of my building projects that have indeed suc-
ceeded; they are both large and small, and include both private and public build-
ings. The first article gives concrete glimpses of material beauty, achieved in our
time. Here the life, dreamed about, experienced in ancient buildings, has been
arrived at by powerful new ways of unfolding space. These methods have their
origin in pattern languages, but rely on new ways of creating order, in space, by
methods that are more similar to biological models, than they are to extant theo-
ries of construction. Above all, they reach the life of buildings, by a continuous
unfolding process in which structure evolves almost continuously, under the cri-
terion of emerging life, and does not stop until life is actually achieved. The trick
is, that this is accomplished with finite means, and without back-tracking. The
second article describes the nature of the social process I believe is needed in the
design-construction business to get these results; it is a kind of Hippocratic oath
for the future. The second shows what kind of social and professional program
may be needed to change things e

ff

ectively in the world. If anything similar is

* Ziva Freiman and Thomas Fisher, “The Real Meaning of Architecture,”

Progressive Archi-
tecture

, July 1991, pp. 100–107, and Christopher Alexander, “Manifesto 1991,”

Progressive
Architecture

, July 1991, pp. 108–112.

x

/

 F

OREWORD

needed for computer programmers, it would be fascinating. Both these articles
may have a bearing on the way software people understand this material.

A full description of all these new developments, together with a radical new
theoretical underpinning, will appear shortly in

The Nature of Order

, the book on
geometry and process which has taken more than 20 years to write, and is just
now being published. The book, being published by Oxford, will appear in three
volumes:

Book 1: The Phenomenon of Life

,

Book 2: The Process of Creating Life

, and

Book 3: The Luminous Ground

. These three books show in copious detail, with
illustrations from many recently-built projects all over the world, how, precisely
how, these profound results can be achieved. What is perhaps surprising, is that in
these books I have shown, too, that a radical new cosmology is needed to achieve
the right results. In architecture, at least, the ideas of

A Pattern Language

 cannot
be applied mechanically. Instead, these ideas—patterns—are hardly more than
glimpses of a much deeper level of structure, and is ultimately within this deeper
level of structure, that the origin of life occurs. The quality without a name, first
mentioned in

The Timeless Way of Building

, finally appears explicitly, at this level
of structure.

With the publication of

The Nature of Order

 and with the mature development
of my work in construction and design, the problems that I began to pose 35 years
ago are finally being solved. There are immense di

ffi

culties, naturally, in imple-
menting this program throughout the field of architecture and building. But the
feasibility of the whole matter, and the extent to which it is well-defined, can, I
think, no longer be in doubt. What is most important is that all this can actually
be

done

. Buildings with these qualities, can be made, in our time, within the con-
text of the modern age, using modern and hypermodern techniques. That is the
prototype fact, which must, perhaps, appeal to those in software engineering,
who hope to arrive at similar results within their field.

I am very sorry that Richard Gabriel and I did not meet, and that this material
was not available to him, because I believe that he wants our quest to have suc-
ceeded, at least succeeded better than it seemed to him it had as of 1985 when we
were just beginning to see the last part of the way. Because I get the impression
that road seems harder to software people than maybe it did to me, that the qual-
ity software engineers might want to strive for is more elusive because the arti-
facts—the programs, the code—are more abstract, more intellectual, more
soulless than the places we live in every day.

Once again, for the readers of

this

 book, the question remains, whether this—
the solution of the architectural problem—like anything else in architecture, has a
true parallel in the field of software engineering.

I do find the vision which Gabriel summons up, the possibility of a world of
computer programs which really do meet the Zen-like conditions that I have
brought to light, quite fascinating in their implications for the world.

F

OREWORD

/

 xi

Although, by now, we all experience computer programs—indirectly at the
very least— and benefit from them, the vision of a technical world out of control,
soulless, in which we are merely digits, still looms large, and for some is getting
larger. It has frightened the core of modern man. Thoughtful people wonder, no
doubt, whether humanity can be regained or maintained.

If the heart of human existence, what matters most deeply to man, woman,
child, really can find its way into computer programming, and into the programs,
and into the meanings of those programs, and into the actual code and substance
of those programs, and into their e

ff

ects—then the future world will be changed
immeasurably.

And if that happens, Richard Gabriel must take enormous credit for his cour-
age in writing such a crazy and inspiring book, based on the work of a visionary
drunk in God, outside his field and outside the field of his readers. I should like to
take my leave of him, and you, and salute my friend, whom I have never met, and
hope that his wish is fulfilled, and that looking back from the year 2100 he may be
known, in some new fashion, as a Dr. Johnson of the twenty-first century.

Berkeley, Calif.

Christopher Alexander

May 1996

