
USE OF HIERARCHICAL DECOMPOSITION

IN COMPUTER SYSTEMS DESIGN

Steven Joseph Di franco

USE OF HIERARCHICAL DECOMPOSITION

IN COMPUTER SYSTEMS DESIGN

by

STEVEN JOSEPH DIFRANCO
/}

B.S., Case Institute of Technology
(1970)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1977

DUDLEY KNOX LIBRARY

NAVAL POSTGRADUATE SCHOOL

USE OP HIERARCHICAL DECOMPOSITION

IN COMPUTER SYSTEMS DESIGN

by

STEVEN JOSEPH DIFRANCO

Submitted to the Alfred P. Sloan School of Management on
May 12, 1977 in partial fulfillment of the requirements

for the Degree of Master of Science,

ABSTRACT

Christopher Alexander has pronosed a methodology
for use in the general process of design. This paper
investigates the application of this methodology,
hierarchical decomposition, to the design of computer
systems. A partial application of hierarchical decompo-
sition to a real-world computer system, the Navy's Joint
Uniform Military Pay System (JUMPS), is demonstrated.
The paper concludes that while hierarchical decomposition
has direct application to computer systems design, the
practicality of the application appears limited to systems
of rather small size.

Thesis Supervisor: Jeffrey A. Meldman,
Assistant Professor of Management

Science

TABLE OP CONTENTS

Introduction 1|

Hierarchical Decomposition--An Overview 7

The design problem 7
The design process 8
Formal representation of the design problem.... 10
Solution of the design problem 13

Application of Hierarchical Decomposition to
Computer-Based Sy stems Design 15

Definitions 15
The form-context boundary 23
Misfits variables i|l

Derivation of a "suitable set" of misfit
variables 63

Misfit variable interactions 70

Summary and Conclusions 90

Notes and References 97

Appendices 100

I Introduction

The rapid progress in all areas of automated data

processing technology over the past two decades has provided

the potential for the realization of increasingly sophisti-

cated and varied aoplications. The computer-based system

designer has until recently been relatively successful in

approaching the problem of design informally and intuitively

because both the scope and complexity of applications have

been limited by the technology available for the implementa-

tion of a design. As this technology has become less

restrictive, computer applications have grown in size, and

the design requirements, which define the nature of the

desired interface between the system and its environment,

have multiplied rapidly. This growth in design requirements

has increased the complexity of the design process to the

point where an intuitive, informal approach to problem

definition no longer suffices. A major constraint to the

successful implementation of computer application systems

today appears to be not the underlying technology, but the

natural limits of the systems designer's intuitive processes.

At the same time, this problem is aggrevated by the limits

of the language, or verbal concepts, in which design require-

ments are stated. The further removed from traditional data

processing new applications become, the less adequate these

verbal concepts are in aiding the designer in identifying

k

and understanding the particular design problems with which

he is confronted. Some problems can only be partially

addressed; others may be completely ignored because of the

lack of a suitable language by which they can be identified

and included for consideration in the design process.

Christopher Alexander nroposes a methodology for use

in the general process of design: hierarchical decomposition.

The methodology allows first for the identification of

design requirements unencumbered by the traditional languages

of the designer's disciplines, and, second, for the parti-

tioning of a set of requirements into subsets sufficiently

small to allow for separate, intuitive evaluation. His

approach is to treat design requirements as a set of binary

stochastic variables, some of which are dependent; by

imposing sufficient conditions on this set, he demonstrates

that it is possible to decompose the set into subsets so

that the dependencies between subsets is minimized. His

proposition is that such subsets of requirements facilitate

the process of design by defining design problems at a level

of complexity which can be approached intuitively.

The hypothesis of this paper is that the approach and

techniques proposed by Alexander have application to the

design of computer-based systems. The objective of this

paper is to evaluate this methodology from the perspective

of a computer-based system designer. The first chapter

below discussed Alexander's proposals and methodology. The

5

second chapter proposes some mechanisms by which hierarchi-

cal decomposition can be applied to computer-based systems

design. This application is illustrated by considering

the design problem of a real-world computer-based system,

the Navy's Joint Uniform Military Pay System (JUMPS).

II Hierarchical Decomposition--An Overview

The purpose of this chapter is to summarize the metho-

dology of hierarchical decomposition as presented by

Alexander, and to define the terminology he employs in its

exposition.

a. The design problem . All designers face the same

problem: that of constrained creation. That is the task

of design is the invention of purposeful form which meets

certain requirements imposed by the environment in which

the form will be employed. These requirements are generally

interdependent? an attempt to construct a form to meet one

requirement may facilitate or make more difficult the

satisfaction of another. The complexity of a design problem

depends on both the number of requirements and their degree

of interdependence. As the complexity of a design problem

increases, the innate cognitive ability of the designer

becomes less capable of integrating the competing require-

ments he must simultaneously consider. The designer is, of

necessity, forced to simplify these requirements, to reduce

them in some way so that he need only consider a mentally

manageable number at one time. Hierarchical decomposition

is the methodology proposed by Alexander to achieve this

simplification.

Alexander defines form as that part of the world over

7

which the designer has control. The environment, or that

part of it outside the control of the designer which defines

the problem (and which is the source of the design require-

ments) is the context. The form and context together

compose an ensemble. The context places demands on the

form, which we articulate as requirements, or specifications

which the form must meet to be acceptable. If the form does

not satisfy a particular demand, misfit is said to occur

with respect to that demand. The objective of design can

be restated as the achievement of fitness between form and

context.

b. The design -process . Alexander studies in some

detail the process of design, the process by which the

designer attempts to construct a form to achieve fitness

with a given context. Alexander examines two cultural

archetypes, a selfconscious (advanced, such as our own)

cultural, and an unselfconscious (primitive) culture, to

compare the differences in their approach to design. The

difference, he contends, is principally in the degree of

separation between the designer and his form. The unself-

conscious designer deals directly with form. The self-

conscious designer is concerned with an abstract represen-

tation of the form, a picture drawn with verbal concepts.

He is concerned then not directly with the form to be

designed, but with the "economies'1 or "acoustics" of the

8

form. These concepts he manipulates by "theories of design"

espoused by the disciplines of his endeavor, such as archi-

tecture, in whose particular languages these concepts are

couched. The unselfconscious designer, on the other hand,

avails himself of no such concepts or theories. Construc-

tion of form in unselfconscious cultures is most often

guided by traditions or rituals, which have evolved over

time as generations of form-makers have adjusted their forms

in minute ways to correct misfit. As these changes are made,

if fit results, they are incorporated into tradition: a

perscription for form-making. This approach is satisfactory

in unselfconscious cultures because the contexts of their

forms are stable, or at least change only very slowly. The

unselfconscious designer, then, is seldom faced with a new

problem, or context, into which his form must be fit. As

a result, he is not concerned with why certain forms work

in certain cases, and not in others. He is aware only of

a right way or a wrong way to construct form, as steeped in

the tradition and rituals of his craft.

Alexander suggests that the unselfconscious designer

often produces more successful forms because his view of

the design problem at hand is not distorted by the verbal

disciplinary concepts employed by his selfconscious counter-

part. To remedy this situation in the selfconscious design

process, the designer must create a further abstraction of

the problem, a picture which describes only the structure,

9

and excludes the biases of the verbal concepts with which

the designer normally views the problem.

»

c. Formal representation of the design problem . To

accomplish this, Alexander proposes the following. Consider

a point at which the form interacts with the context in any

way to be a binary variable. If the form designed meets

the demand placed on it by the context at that point, we

consider that fit occurs, and misfit otherwise. The collec-

tion of all such points defines a set of "misfit variables".

The misfit variables are not all independent, in the sense

that construction of form to achieve fit at one misfit

variable may make it easier or harder to achieve fit at

another. The interdependencies between any two of these

misfit variables we call "misfit variable interactions".

Formally, this is represented as an undirected graph

G(M,L). The set M is the set of misfit variables; the value

of the variable is 1 if misfit occurs, and otherwise. The

set L is a set of coefficients describing the interactions

between the misfit variables; their sign and magnitude

reflect the direction and strength of the dependency. The

set M can be viewed as the vertices of the graph G, and L

as the links betwen them.

G(M,L) is therefore an abstract but formal picture of

the design problem; it reflects the designer's best estimate

of the structure of the design problem. In the process of

10

design, the designer attempts to divide this problem into

subproblems of smaller scope. The designer would like

these subproblems to be both as internally cohesive and as

independent from each other as possible. In terms of G(M,L),

the subproblems are defined by partitioning M into subsets

of misfit variables. Because some of the members of M are

interdependent, as described by the set L, not all decompo-

sitions of M into subsets are equally beneficial to the

designer. The most sensible decomposition of M would produce

subsets of misfit variables which are highly "clustered"--

in which the density of the links between variables in a

subset is as high, and the density of links between members

of different subsets as low, as possible. Alexander provides

one method of achieving such a "sensible" decomposition of

the set M, which he calls hierarchical decomposition.

The algorithm employed by Alexander to achieve this

is, very generally, as follows. Each misfit variable is

considered to be a stochastic variable, each chosen so that

the condition of misfit is equally probable for all variables.

The set L (after suitable normalization) is taken to estimate

the pairwise correlation coefficients between these variables.

From these, the probability of any distribution of misfit

and fit among the elements of M can be calculated. These

probabilities determine the information content, H(M), of

the set M, taken as a whole. In a similar fashion, the

information content of any subset of M, say S^, can be

12

determined by calculating the probability distribution of

its possible states.

Consider the partitioning of M into two subsets, S,

and Sp. The dependence between these two subsets is given

as R(p), which is equal to H(M)-(H(SL)+H(S2)) , where p

identifies the particular partition. What we want to do is

to select S
1

and S
2 such that R(p) is minimized (i.e., such

that the subsets are as independent as possible). Algorithm-

ically, an iterative, "hill-climbing" procedure is employed

to achieve this. The set M is partitioned arbitrarily, and

R(p) evaluated. Each misfit variable is then moved, one at

a time, between S^ and Sp until a minimum value for R(p)

is achieved. The algorithm terminates with the identifica-

tion of the two most independent subsets of M. The process

is then repeated by considering each of the subsets in turn

and decomposing them independently, until the "best" parti-

tions are single element subsets. The decomposition thus

takes on the appearance of a binary tree or hierarchy, whose

nodes at any level represent the best decomposition of the

immediately proceeding subset.

d. Solution of the design problem . The designer at

this point is faced with a number of individual sets of

misfit variables, each dense in internal interactions, but

relatively independent of every other such set. They thus

represent fairly isolated groups of requireraents~-the

13

designer can consider the nature of the form required to

avoid misfit in one of the subsets without significantly

affecting fitness between form and aspects of the context

defined by other subsets of misfit variables. In this

hierarchical decomposition, the complexity of the design

problem has been reduced not by grouping requirements under

abstract verbal concepts, but by uncovering the structure

of the context. The solution to the original problem is

attained by the composition of forms constructed for each

of the subproblems suggested by the decomposition—the syn-

thesis of form.

%

Ill Application of Hierarchical Decomposition to Computer-

Based Systems Design

The preceeding chaoter provided an overview of

Alexander's view of the general process of design, the

process by which forms are constructed, and outlined the

methodology of hierarchical decomposition. The thesis of

this paper is that this methodology has a direct application

to the design of computer-based systems. This chapter dis-

cusses this application. The first section below examines

some definitional issues, and the remaining sections investi-

gate the specific mechanisms by which the methodology of

hierarchical decomposition can be applied to the design of

computer-based systems.

a. Definitions . Before attempting to apply Alexander*

s

methodology to computer-based systems design, two definition-

al issues must be addressed. First, we will wish to equate

"computer-based system" with Alexander's notion of "form",

and "computer-based system environment" with "context". To

do this, we must define, for the purposes of this paper, the

scope of a computer-based system--which elements or compon-

ents are part of the form, and which are part of the context.

Second, we recognize that the "process of design" is not,

in itself, a single well-defined activity, but is rather a

concept describing a composition of activities in which the

15

designer participates or undertakes. We must define the

activities relevant to computer-based systems design in

which hierarchical decomposition has application.

(1) Computer-based systems scope . The scope of a

computer-based system is a central issue in the study

of computer-based systems design. A computer-based system

implementation can be viewed as the insertion of an artifi-

cial form into some larger context. It is the extent of

the system, the scope of the form being constructed, which

defines the "systems interface" between form and context.

p
As Alexander suggests,

every design problem begins with an effort to
achieve fitness between two entities: the form
in question and its context.

"Fitness" is both a statement of the objective of the design

process, and a (desirable) condition of the interface

between form and context. It is essential that the design

process center, at least initially, on the accurate identi-

fication of this interface, which Alexander refers to as the

"form-context boundary". In the first computer-based systems

application, this boundary was fairly well defined. These

applications dealt primarily with the automation of manual

clerical functions, which themselves were well defined.

Since these traditional data processing applications were

designed for the replacement of existing forms, usually

on a one-for-one basis, the form-context boundary could be

16

easily defined. As both technology and experience in

computer-based systems grew, new systems were developed

not simply to replace existing (manual) forms, but to inte-

grate existing functions and to perform functions not pre-

viously existing. Form-context boundaries became increasingly

hard to identify. As the "true" interface between a computer-

based system and its context became more obscurred, the proper

focus of the design process, the achievement of fitness along

this interface, was lost. The design process, necessarily

proceeding from some statement of requirements or function,

selected system interfaces that could be most easily described.

This phenomena gave rise to the "narrow" definition of the

scope of a computer-based system. Many large systems were,

and continue to be, designed based only on quantitative

specification of input and output across the most visible

interface—the computer room door. This strategy, while

simplifying the design process, ignores the achievement of

fitness along the broader, and more appropriate, system

interface. Only after a system thus designed is implemented

(operationalized) , does fit or misfit along this boundary,

the actual form-context boundary, become apparent.

For the purposes of this paoer, then, we will assume

a very broad, when compared to the traditional, definition

of computer-based system. We will assume that not only

those components within the confines of the computer room

are included in our definition of form, but also all those

17

necessary to achieve or support the system's entire function.

These may include manual or automated correction facilities,

archival storage and library components, and data transmission

and receipt facilities. We will also include in our defini-

tion of form the operating procedures developed for use by

organizational components of the context which are required

for system support.

(2) The design process in computer-based systems .

Many authors have explored the nature of the design process

in computer-based systems, and have proposed frameworks to

describe the activities involved in this process. Murdick

reviews the work of 17 contributors in this area, and

demonstrates the similarity in approach, if not language,

in identifying and structuring design-related activities.

He suggests the following stages for the design process as

a composite of these separate proposals.

Some problems of nomenclature arise, but an
examination. .. seems to indicate the following
synonyms

:

1. Investigation=preliminary survey=problem
definition=def ine need or mission objective=
analyze the present system.

2. Feasibility study=conceptual design=esta-
blishment of performance specifications=
gross design=Phase I design.

3. Detailed design^develop system operating
spec ific at i on s= systems def in it ion=analysis
and synthesis=systems scquisition=Phase II
design.

18

1|. Implementation=installation=systems construction.

He further points out that^

a step-by-step description is not really appropriate.
Many activities are carried out in parallel and there
is much iteration or recycling to refine the design.

Regardless of the sequence in which these activities are

actually accomplished, it is suggested that they fall,

conceptually, into two categories. The first, which we will

call the "design phase", encompasses the activities of the

first three steps in Murdick's framework. The second, or

"implementation phase", corresponds to the fourth step.

The distinction between these two categories is the

nature of the activities of which they are composed.

Activities in the design phase can be viewed as processes

of abstract conceptualization. Beginning with some notion

of function(s) which the system is expected to perform,

abstract logical components are assembled to translate some

input to required output. By contrast, activities in the

second category, the implementation phase, require construc-

tion of physical components which display the external

characteristics of their logical counterparts.

The distinction between the nature of the activities

in these two categories is underlined by the growing dis-

parity in formal design aids, or methodologies, available

for each category of activity. On the implementation side,

programmers and systems designers have available an increasing

number of more effective tools to assist them in principal

19

implementation activities such as code construction and

hardware selection and configuration. For example, numerous

algorithms for the performance of standard data' processing

functions have been developed, cataloged, and analyzed.

Simulation packages are available to assist in evaluating

alternatively configured systems' performance. While the

implementation phase of the design process has not been re-

duced (or elevated, depending on point of view) to the realm

of "science", there is no question that the computer-based

systems implementor has a increasing variety of rational

resources besides his imagination upon which to draw.

On the design side, however, comparatively little

progress has been made. Until recently, there were almost

no tools available to assist the designer in his task of

developing an integrated logical form which displays fitness

with its context. Davis observes that

It is one of the anomalies of information systems that
this field, which is applying technology to informa-
tion processing at such a rapid rate, has not applied
technology to any significant degree to its own ana-
lysis and design process.

7 8 9Recent work by Myers, , Rockart, and King and Cleland 7 have

begun to provide the systems designer with a model-based

framework for design and evaluation of computer-based systems

Use of these model-based techniques, however, do not as yet

appear to have achieved widespread practical application.

As the failure of many computer-based systems develop-

ment efforts is increasingly attributed to design rather than

20

implementation activities, significant attention has been

directed toward development of formal design-aiding metho-

dologies. The most successful of these have found applica-

tion is the development of detailed design specifications

and in the initial organization of a computer-based system

by logical processing modules. These methodologies, including

"composite design" and "structured programming" have

primary amplication in the activities of step 3 of Murdick's

framework. But all of these methodologies proceed from

explicit statements of general systems requirements and at

least a basic definition of the proposed system's internal

architecture—products of Murdick's step 1 and 2 activities.

While there have been several attempts at providing a formal

methodology for use in these activities (such as Tiechroew's

IPProblem Statement Analyzer), these have not achieved any

practical degree of acceptance.

In most computer-based systems development efforts,

designers continue to rely on experince gained through work

on similar applications. While experience may be the best

teacher in some endeavors, it is insufficient by itself in

computer-based systems design for two reasons:

First, most designers lack an acceptable framework for

analysis of existing forms. That is, the designer has not

developed, or been presented with, a robust set of factors

which explain the viability of a system. Failures and

successes are explained ex nost , but these explanations

21

provide the designer little insight from which he can benefit

in the design of new forms. The best that he can achieve is

a set of heuristics, specifying necessary design activities

without explaining the structure of the problem which makes

these activities advisable. Thus experience in computer-

based systems design is often ineffective in guiding future

design due to the lack of a comprehensible framework in which
to evaluate it.

Second, the contexts into which computer-based systems

are inserted vary significantly from amplication to applica-

tion, even when the applications (the purpose or function of

the systems) ar>pear to be identical. The recent development

of standard software packages has been made possible only

through the stringent specification of requirements along

the "narrow" definition of the form-context boundary. The

decision to employ such a package and the selection of one

from amoung those available is an activity of the implemen-

tation rather than the design ohase, which is more properly

concerned with fitness along the broader form-context inter-

face. The process of form design, if it is to be based solely

on experience or tradition (as in Alexander's unselfconscious

cultures) must necessarily be concerned with a stable, or at

least only very slowly changing context. The diversity among

the organizational entities in which computer-based systems

are employed evidences this lack of stable context in the

process of their design.
22

What the above suggests Is that experience alone is not

sufficient in computer-based systems design. At the same time,

no design-aiding technologies enjoy popular application. As

will be suggested below, however, Alexander 1 s methodoloy of

hierarchical decomposition has application in assisting the

designer in these initial design activities (summarized by

Murdick above as Step 1 and Step 2 activities).

b. The form-context boundary . The application of

hierarchical decomposition begins with the division of the

ensemble into form and context. Alexander defines "form"

and "context" only in a very general way: *

The form is a part of thw world over which we have
control, and which we decide to shape while leaving
the rest of the world as it is. The context is that
part of the world which puts demands on this form;
anything in the world that makes demands of the form
is context.

The purpose of this section is three-fold: First, to define

in greater detail the concepts of "form" and "context" by

examining the nature of the boundary between these from a

computer-based system perspective; second, to outline an

approach to selection of the form-context boundary most

useful to the computer-based systems designer; and third, to

illustrate this approach through examination of the Joint

Uniform Military Pay System (JUMPS).

(l) Nature of the form-context boundary . It is first

23

necessary to recognize that computer-based systems are

generally implemented in a formal organization environment,

usually a business or government organization. These organi-

zations themselves are composed of numerous organizational

components, usually assembled in a hierarchical fashion, and

each assigned particular functional responsibilities. In

accomplishing their assigned function, organizational compon-

ents seldom act individually, in isolation from each other,

but rather deoend on other organizational components. A

computer-based system (the form to be designed) whose purpose

is the displacement of function will interact similarly with

at least some existing organizational components: It will

place demands on some in support of its operation, and will

have demands placed on it by those components to which it

provides functional support.

We will consider these demands as "interactions" between

the system and identifiable components of the organization

in which it is implemented, and categorize these interactions

as follows:

Information interactions : Computer-based systems are

primarily concerned with the processing of information. Many

functions such systems displace from organizational compon-

ents are therefore those functions which are likewise infor-

mation-centered. We will consider those points at which

information is provided to the system as input, or produced

by the system as output, to be points of information inter-

2k

actions.

Control interactions ? In addition to providing or

utilizing the information which a computer-based system pro-

cesses, organizational components may interact with a system

by controlling its operation in some way, or vice versa. In

a system designed for the retrieval and display of data, a

command language, or systems interface, must be provided for

the user to specify the data to be retrieved or the operations

to be performed on the data. Other systems may be constructed

so as to provide output relating to the execution of the

system, perhaps error messages indicating that certain actions

must be taken by the operator or user.

Financial interactions : Some organization components

interact with the form from a financial perspective. Budget

offices typically allocate funds or set ceilings on the

resources available to the prospective system, in terms of

development, operation, and maintenance.

Other interactions : Finally, there are other inter-

actions which take place between organizational components

and the form to be designed which are not information, control,

or financial in nature. These include those interactions which

specify directly certain requirements which the system must

meet, and which are common to all systems in a designated

class. Standard requirements for documentation of a system

developed within a particular organization is an example of

such an interaction. Requirements for precautions to be taken

25

to insure data base integrity or security of information are

others.

We will define the context of the design problem to

be comprised of all organizational components which will

interact with the system in one of the ways just mentioned.

The boundary between the system (form) and these organiza-

tional components (context) is described by the specific

interactions themselves.

(2) Selection of the form-context bo\indary . We can

consider two separate but related steps in the process of

selection of the form-context boundary. The first, a

"general positioning" of the boundary, identifies those

components outside the control of the designer, but which

will interact with the form to be designed. The second step,

"specific positioning", identifies the specific interactions

between the form and the organizational components of the

context.

Three cases need to be considered in general positioning

of the form-context boundary:

Displacement of existing: function ; The simplest computer-

based system is one which displaces a single function performed

by an existing organizational component. This organizational

component itself can be thought of a3 a form which the system

to be designed will, in part, replace. The designer can

identify those organizational components which interact with

26

this current form through implicit or explicit construction

of a descriptive model of the functional process. The com-

ponents thus identified will occupy the context of the design

problem.

Displacement and integration of function : Computer-

based systems are increasingly implemented to integrate

functions which may previously have been performed by several

organizational components. The context of the design problem

in this case comprises all organizational components which

interact with the existing forms whose functions the system

to be designed will displace. These can perhaps best be

identified, as in the above case, by construction of a descrip-

tive model of each of the current functional processes.

Performance of new function : As suggested in the intro-

duction to this paper, the expanding technological basis for

computer-based systems has made possible the implementation

of new function, previously not achievable by existing forms.

Descriptive models are, of course, ineffective in locating

the context of the design problem in this case. Here the

best the designer can do is anticipate the organizational

components which will interact with the proposed system:

those which either will support the system 1 s operation, or

which will depend on the system for their own functional

support.

With regard to the first two cases just mentioned, it

should be noted that construction of descriptive models of

27

the current functional process (es) which the system will dis-

place is not, in general, sufficient to identify all compon-

ents of the context. The system to be implemented may require

operational support other than that currently available. For

example, no facility may currently be in place for correction

of erroneous input to the proposed system. As in the third

case above, the designer's task is to anticipate in which

organizational components these new "systems support facilities"

will reside, and use this to augment his descriptive model.

After the context of the design problem has been generally

defined, the designer must specifically position the boundary

between form and context. This is accomplished by identifying

the specific information, control, financial, and other inter-

actions between the components of the context and the form

to be designed. The most salient interactions will be those

which contribute significantly to stress, or misfit, between

the existing form(s) and their context(s). The motivation

for development of the proposed system is often the elimina-

tion of stress in specific form-context interactions. It is

important for the designer to realize, however, that all

interactions must be considered in definition of the form-

context boundary, not only those interactions currently

contributing to this stress. The purpose of the form-context

boundary selection process is to identify an interface between

the system and its environment along which it is possible for

points misfit to occur. The designer must include in the

28

form-context boundary those interactions which are currently

satisfactory because he has no guarantee that the form

suggested by the process of hierarchical decomposition will

maintain this fitness with those components. The process of

general and specific form-context boundary positioning is

illustrated by the following example.

(3) JUMPS application . To clarify the issues

involved in the selection of an appropriate form-context

boundary in computer-based systems design, we will consider

a real-world system recently implemented within the Navy—

the Joint Uniform Military Pay System (JUMPS).

(a) JUMPS overview . JUMPS was originally proposed

in 1966 as an integrated, automated, centralized replacement

for the Navy ! s manual payroll and leave accounting system.

The primary objectives of JUMPS were: ^

First, to improve the administration of the Military
Personnel Appropriations through establishment of a
central financial reporting system, based on the
principles of accrual accounting, for the reporting
of obligations and expenditures from these appropria-
tions; second, to take advantage of the increased
availability and effectiveness of automatic data
processing (ADP) equipment and supporting software
in the area of military pay.

While payroll systems are normally considered to be among

the most simple of computer-based systems to design and

implement, design and development of JUMPS proved to be both

lengthy (10 years) and expensive (approximately $70 million).

29

There are several reasons for this, including the sheer size

of the application (nay accounts are maintained for 600,000

members), the complexity of the military compensation struc-

ture (which supports over 100 different types of pay and

allowances, each with its own particular set of authorizing

conditions), and the mobility and dispersion of Navy members

(who may be assigned to any of more than 1000 units capable

of world-wide deployment). The most significant reason,

however, appears in retrospect to have been the designers'

lack of appreciation for the true scope of the system which

they were designing.

Figure 1 is a general overview of the Navy's manual

payroll system as it existed before JUMPS. Navy members

are assigned to one of some I4.OOO commands, or local units.

Disbursing support for a local unit (or several geographi-

cally proximate units) was provided by a local disbursing

office. These offices maintained member pay accounts

according to pay procedures issued by the Comptroller of the

Navy (NAVC0MPT), and based on pay-related transactions and

member change requests issued by the local unit. Payments

to members (expenditures) and amounts due members but not

paid (obligations) were reported by local disbursing offices,

summarized by NAVC0MPT, and provided to the Chief of Naval

Personnel (CNP), the Military Personnel, Navy (MPN) Appro-

priation manager. CNP also received personnel-related trans-

actions directly from the local unit, from which a data base

30

IG IRS/
SSA

Member

Assumed
I Systems
! Interface '

I J

Pre-JTJMPS
Payroll System

Figure 1

^Functional
Interact

Org.
Compon-
ent

31

providing Navy strength and corapsition information was

derived. This information, together with the obligation

and expenditure reports, assisted CNP in the Drogram,

planning, and budget execution activities relating to the

management of the MPN appropriation. Reports of wages and

of withholding of Federal Income Tax and Social Security

payments from members 1 pay were provided to the Internal

Revenue Service (IRS) and the Social Security Administration

(SSA). The Navy Inspector General (IG) was charged with

conducting periodic formal on-site audits of local disbursing

office operations.

This describes briefly the enviornment in which JUMPS

was to be imolemented. JUMPS was expected to perform the

seven basic functions listed in figure 2 and described more

fully below.

Pay account maintenance : The official pay account for

each Navy member was to be maintained in automated form at

the central site (the Navy Finance Center). The local

disbursing office structure was to be maintained, but their

function would be limited to transmission of pay-related

transactions to the central site (also see below under "member

payments"). These transactions would be initially generated

by the personnel office of the local unit to which the member

was attached. These transactions would report any change in

the member's status (promotion, unauthorized absence, detach-

ment, etc.) or the unit's status (deployed, entered dry dock,

32

©\ o »

+i*-i
CO \ •H Ch
P En c «M
o Ph 2 o

•P-H gC-P O P rH to
<D O O «H as p
p a > c O "H
P P < 3 O CO

3 © S iH PO -P \rH <S \ 3
P P CO P CO P,QM © O& O

© © CO

•H
ErH E CO fit Ph 1 I

© © K © £h 1 ls S H S O
P
O
•HP
O

P
o
•HP
O
P
2

Current

s© © © © •a +>o o O © o £ £
CO ©•H •H •H o •H © ©

CO «H <H «H •H Cm P p B
*>siH P <M «H «H <M Cm CO or-i& P O O O <m O p pPtH © O 1 1 o g

•H OC^C to tO to tOEn 1 1 C\J© p O p p p r-i PPh POP O P •H •H •H © •Hg o ©P P g CO CO CO P CO o p © Ch
p" co o M p P c PO 3 rH 5o © o 3 3 3 O P> PH ,Q

PC .Q ,0 .a CO £>< •H •H
10 CO CO P rajs; CO CO Ph•H •H •H © •H a, c<P Q Q Ph

©
o

©
P
P

osed

JUM!
Respoi

©
O s

P
•H

P,
o

s p
©

•a
P

P P
Pip +> © 3

O ©
©p p

•H & o
op e p <o © o cP •H e CO Op o 05 •p o >H COO «m e B to p p >-.-p p1

•H p © P c oO CO CO p
+5 CD p £ •H p to P'H COo p p l» P o p p 1 H -PP ^ c-.i fn o O H rH >H CO
J3 © o P o o H -P © O
Ph .P o p CO P P c c p

o H © CO O P o c
0$ © P © to P O o p

JO > •H © CO © o
*>> e K CO rH P p p o
03 © CO © ,Q © o
Ph S Eh tl O Ph <;

33

entered combat zone, etc.) which could affect the member's

pay account by altering his set of "current entitlements".

The central site would receive these transactions and attempt

to update members' accounts based on the input transaction,

automated logic (reflecting actual "nay procedures then in

effect), and the current status of the members 1 accounts.

When JUMPS was fully implemented in January 1977, an average

of 3^0,000 transactions were received per month. The major

difficulty encountered in the design of the system was the

complexity of the military pay compensation structure. The

specifications for processing of transactions (implemented

in the form of decision logic tables) required identification

and handling of more than 16,000 separate cases. While some

were trivial, some required almost a complete rewrite of the

member's account, with attendant requirements for updating

history files, audit trails, and tax and expenditure reports.

In the end, it was decided not to implement some 600 cases in

the automated update logic but to accomplish the necessary

action manually in an off-line mode at the central site.

Member payment i Payments to members were to be accom-

plished in one of two ways. First, some members could elect

to participate in a "Net-check-to-bank" program, under which

their net pay due (on the 15th and 30th of each month) was

deposited directly in a financial institution via the

Treasury's Composite Check Program, Composite checks

(listing all members and amounts to be deposited at a parti-

3k

cular bank) were to be prepared at the central site. Second,

the member could elect to receive his pay directly, in either

cash or check. These disbursements were to be made by the

local disbursing offices, based on pay account status pro-

vided by the central site (see below under "Account status").

The disbursing office would prepare a report of payments ac-

tually made for submission to the central site so that member

pay accounts could be debited.

Tax reporting ; The central site would prepare all reports

required by the IRS, SSA, and the States, based on the member

pay accounts.

Leave account maintenance : JUMPS was also to provide

a vehicle for leave account maintenance, a function which

has traditionally resided in the local personnel office.

Because the military compensation structure allows a member

to "sell" unused leave under certain circumstances, and

because many Day-related transactions also affected a member's

leave status, an integrated accounting system for both pay

and leave seemed appropriate.

Obligation and Expenditure reporting . The central site

was to prepare monthly reports of obligations and expendi-

tures to CNP, based on the actual member pay accounts. These

reports were broken down by numerous categories, and included

approximately $I).00 million in disbursements each month.

Personnel account-pay account reconciliation . As men-

tioned above, CNP maintained an internal data base system,

the Manpower and Personnel Management Information System

35

(MAPMIS) which provided Navy strength and composition infor-

mation, and which was maintained by personnel-related trans-

actions prepared by local personnel offices. Because many of

the data elements in both JUMPS and MAPMIS were identical, a

periodic reconciliation between the two systems to insure

integrity of data was desirable. Although this function had

not previously been performed, it was not expected to be

significant, because input to both systems was prepared at

the same units, the local personnel offices.

Account Status : The second new function to be perforaed

by JUMPS was the provision of pay and leave account status to

the member, the local unit to which he was attached, and to

the local disbursing office. The statement of account status

was to include, for each member, all credits and debits, with

annotations of any changes since the last statement. The

disbursing office was to use this statement to determine the

amount of pay due each member paid locally, which was taken

to be one-half the difference between accumulated credits

and debits for each bi-monthly payday. The local disbursing

officer could adjust this amount based on transactions input

to the central site but not reflected on the current statement

of account status.

17The general systems specifications developed for JUMPS

provide for the accomplishment of these functions, and specify

requirements to achieve these within the systems interface

outlined in figure 1. As will be discussed below, this inter-

36

face embraced only a "narrow" definition of the system's

scope, which contributed significantly to the subsequent

problems encountered in JUMPS development.

(b) General positioning of the form-context

boundary . General positioning of the form-context boundary

requires that the system's proposed functions be stated, the

organizational components responsible for these be identified

(if any), and the organizational components with which these

currently interact be specified, as in figure 2. In consider-

ing "functions", we include those currently residing in a

single organizational component, those shared among several,

and new functions not performed by any existing organizational

component.

As Figure 2 indicated, JTJMPS was both to displace and

integrate functions performed by several existing components

and to perform new functions not previously existing. Figure

3 depicts the actual context of the JUMPS design problem,

based on those organizational components with which the pro-

posed system will interact to accomplish its designated func-

tions. It should be noted that the context of figure 3 does

not exactly coincide with the JUMPS environment determined

by the system's interface indicated in figure 1. There are

three major reasons why the assumed system's interface was

inappropriate for the JUMPS design problem, which are visibly

evident from the differences between figure 1 and figure 3«

37

by JUMPS. By including it within the system, no requirements

were developed to interface NAFC with the rest of JUMPS.

Significant problems exist in the operation of the system

today due to the lack of flexibility within JUMPS to accommo-

date new interpretations of pay-related legislation. By

neglecting to consider potential misfit along the NAFC-JUMPS

interface, significant stress is evident.

Third, no explicit recognition was given to the inter-

actions required to support the proposed system function of

personnel and pay account reconciliation. To accomplish this,

the CNP data base system, MAPMIS, would need to interact with

JUMPS to a significant degree. Because MAPMIS was not identi-

fied initially as a component of the form-context boundary,

no requirements were developed to define this interface. This

problem was belatedly recognized, but only after JUMPS had to

a large degree been designed. As a result, only limited fit

between JUMPS and MAPMIS was achievable.

(c) Specific positioning of the form-context

boundary . After the organizational components which directly

interact with the system have been identified and tentatively

included as part of the context of the design problem, the

portions of the boundary relevant to the design problem are

specified by identifying the specific interactions across the

boun y. Figure I4. considers a portion of the boundary select-

ed above by enummerating the possible types of interactions

38

Context

JUMPS Form-context Division

Figure 3

39

First, the function of leave account maintenance was

to be displaced from the local personnel office, a component

of the local unit. By positioning the interface to exclude

the personnel offices from the "system", interactions between

the personnel office and other organizational components

were ignored in developing systems specifications for JUMPS.

Specifically, the interaction between the local administrative

office and the personnel office was not at all considered.

This interaction, in the form of "pay authorizations", served

as the basis for preparation of the personnel- and pay-

related transactions in the personnel offices. As the oper-

ation of personnel offices was modified to meet JUMPS opera-

ting requirements, significant misfit between the personnel

offices and the local administrative offices became evident.

Because the time frames in which pay-related transactions were

required to be prepared was not compatible with that in which

pay authorizations were prepared. As a result, input to JUMPS

was significantly less timely than originally expected. Also,

the control mechanism established for JUMPS input differed

from that used in the administrative offices, with the result

that the intended audit trail for input was not effective.

Second, the Navy Accounting and Finance Center (1TAFC),

a component of NAVCOMPT responsible for interpreting pay-

related legislation and regulations and for promulgating

these to local disbursing offices, was included within the

system, even though none of its function would be displaced

37

by JUMPS. By including it within the system, no requirements

were developed to interface NAFG with the rest of JUMPS.

Significant problems exist in the operation of the system

today due to the lack of flexibility within JUMPS to accommo-

date new interpretations of pay-related legislation. By

neglecting to consider potential misfit along the NAFC-JUMPS

interface, significant stress is evident.

Third, no explicit recognition was given to the inter-

actions required to support the proposed system function of

personnel and pay account reconciliation. To accomplish this,

the CNP data base system, MAPMIS, would need to interact with

JUMPS to a significant degree. Because MAPMIS was not identi-

fied initially as a component of the form-context boundary,

no requirements were developed to define this interface. This

problem was belatedly recognized, but only after JUMPS had to

a large degree been designed. As a result, only limited fit

between JUMPS and MAPMIS was achievable.

(c) Specific positioning of the form-context

boundary . After the organizational components which directly

interact with the system have been identified and tentatively

included as part of the context of the design problem, the

portions of the boundary relevant to the design problem are

specified by identifying the specific interactions across the

boun y. Figure 1| considers a portion of the boundary select-

ed above by enummerating the possible types of interactions

38

o
•H
•P
cc

o

CH

00

C
O
•H
•P
CO

u
©
o
•H
<M ©
*H o
O •H

<H
bDCn
C o

TJ £
S

•H
e

g 73
1 CO

Oo

CO

fa

CO

-p
CO

N -P
»H CO

O
•p

b

p
§o
o
o

!>> <

o
F-H

•p
C
oo

<D

T3

CO

©
O
•H

© P
,Cj O
O C
CO

O

CO

L

o
•HP
cc

o
Cm
CH

©

©

P
CO

<D

CT
1

<D

U co

•P

to ©
a j>>£ co

©

<D

S

CO

?!
-P
CO

-P
CO

-p
C
O
o
o<

O

-P
c
OO

•P
CO

©

cr
©

CO

ft

CO

•H
O
©
ft
03

P
©P
oo

ctf

o

-p

©
-p
c
O
O
t

o
fa

_3-

©
f-,

5
•H
fa

'O
fa

39

which can occur. (For simplicity, only information and

control interactions between JUMPS and the local administra-

tive office and JUMPS and the member are shown.) Some of

these interactions currently exist: pay authorizations,

member change requests, and special pay requests. Several new

interactions required to support or use the new system's func-

tions are also included: request for and provision of account

status to either the member or the Commanding Officer/admin-

istrative office, an option to reschedule regular paydays

by the Commanding Officer (to meet local unit operational

constraints), and an error notice interaction to allow for

correction of erroneous input to the system.

The specifications of form-context interactions (extended

to include all portions of the form-context boundary) will

completely position the boundary between the system and its

context.

The above JUMPS example serves to illustrate the exten-

sion of Alexander's definition of form and context to a

computer-based systems environment:

First, those organizational components responsible for

function which will be displaced by the proposed system must

conceptually be viewed as part of the form which the system

will replace, and interactions between them and their "contexts"

be considered in defining the form-context boundary for the

new system.

ko

Second, those organizational components whose function

will not be displaced by the proposed system must be consider-

ed as part of the context, so that interactions between these

and the form to be designed can be determined.

Third, organizational components with which the proposed

system will interact in connection with new function must

be explicitly included in the context to allow for estimation

of required (but currently non-existant) interactions.

These considerations will aid the designer in assigning

the elements of the ensemble (organizational components) to

form or context in the manner most useful for design of

computer-based systems. Definition of form and context allows

the specific interactions between these to be investigated.

Once these, which define the form-context boundary, have been

identified, the designer can proceed to isolate the specific

points along the boundary at which misfit can occur—the

process of selection of misfit variables.

c. Misfit variables . At this point, the designer is

concerned with developing a set of statements which, reflect

the possible ways in which misfit might occure between form

and context. This section considers the language, or the

articulation, of misfit in computer-based systems.

(l) The nature of "misfit" . We have some general

notion of "misfit" as a lack of harmony, or a discordant

111

condition, but a formal definition of the concept is elusive.

But we do know, as discussed above, the conditions under

which a misfit can occur: at those points of interaction

between form and context. We know, in a computer-based

systems environment, something of the nature of these inter-

actions. Form-context interactions, or the demands placed

on one by the other, occur when information is passed across

the form-context boundary, when control is exercised, or when

financial or other requirements must be met. The question

then becomes one of examining how misfit might occur in

these four types of interactions.

(a) Information interaction misfits . We can

consider two different aspects of the information exchanged

across the form-context boundary at any given point: its

content, or subject matter, and its characteristics. The

characteristics of the information include such qualities as

accuracy, currency or timeliness, frequency, and level of

i ft

aggregation. We could expect misfit to occur if either

the content or characteristics of the information exchanged

fail to meet the requirements of the recipient (form or

context). Moreover, we could expect these requirements to

vary from context to context, and from point to point along

a single form-context boundary. This boundary has been pos-

itioned by identifying those organizational components which

will interact with the form. These components may be differ-

k2

entiated both by area of activity (marketing, production,

accounting), and by the level of this activity (strategic,

tactical, or operational). The area of activity will

generally determine the requirements for information content.

The characteristics of the information required are largely

20
a function of the level of activity. With regard to infor-

mation interactions between form and context, we therefore

face possible misfit along a variety of dimensions at any

given point on the form-context boundary.

(b) Control interaction misfits . While signi-

ficant attention has been given to analyzing the informa-

tional requirements of differing organizational components,

substantially less has been directed towards understanding

control interactions in computer-based systems. This is

understandable in that until recently, the technological

basis for computer-based systems did not support any signi-

ficant degree of control interaction between system and user.

Now that such facilities as timesharing and on-line data

base systems are possible, there exists the latitude for

considerable interaction between system and user which must

be considered in systems design. Little proposes that there

exist general requirements which must be met at points of

21control interaction on the user-system interface. These

include communicability, ease of control, and robustness.

These are obviously broad categories of requirements, rather

k3

than specific statements of potential misfit, but they do

provide some insight into the nature of misfit in control

interactions. Stress may occur along a "communicability"

dimension for a variety of reasons: the language of control

may be foreign to the context; the mechanism for control

(lightpen, keyboard) may be too time consuming or too restrict

tivej error messages or requests for input may be unintelli-

gible to the context. Similarly, on the "robustness" dim-

ension, misfit may be evident if the system lacks the ability

to handle commonly misoelled systems commands. But a key

point here again is that misfit is a function of both form

and context, the system and its users. A control language

perfectly corrroatible between form and context at one point

of the interface may result in misfit at another. A data

base manager, for examole, might find that the English-

like, robust language developed for the interface between

the system and the non-technical user to be cumbersome,

ineffective, or not sufficiently specific for his purposes.

Little's general requirements, therefore, give some insight

into the nature of potential misfit in control interactions.

(c) Financial interaction misfits . Of all

possible misfits between form and context, those resulting

from financial interactions are the easiest to understand.

The most common and most visible misfit evident after imple-

mentation of a comouter-based system has traditionally been

the misfit between actual accrued development cost and the

anticipated budget.

(d) Other interaction misfits . Interactions

other than those described above have become increasingly

numerous over time as a growing number of organizational

components begin to be placed at the form-context boundary.

This growth is attributable in part to the growing public

interest in the design and operation of computer-based sys-

tems. The impact of recent legislation (in the areas of

privacy and security of information) is just beginning to be

understood. Specific requirements, in terms of the actual

design of computer-based systems which would insure fit be-

tween the system and applicable statutes have certainly not

been determined. In addition to legislation, there exists

an increasing tendency for organizations to attempt to stand-

ardize their computer-based systems and to establish in some

cases specific regulations for their design. All systems

for the disbursement of public funds, for example, must

22comply with General Accounting Office regulations; systems

developed in the Department of Defense which support military

operations (such as JUMPS) must include provisions for mobi-

23lization or deployment contingencies. It is obvious that

this proli ation of requirements provides a fertile field

for potential misfit.

With these general ideas of the nature of misfit which

can occur between a computer-bases system and its environment

in mind, we will define misfit varj able as: A statement of

a condition relative to interactions between form and context

which if not met will result in stress, or misfit, in the

ensemble.

(2) Traditional approaches to avoiding misfit . It

may be argued that computer-based systems designers have

always been concerned with avoiding misfit between the systems

they design and the context of their application. The tradi-

tional mechanism employed to this end is a (more or less)

carefully developed set of specifications, or requirements,

which the system must meet to be "acceptable". These speci-

fications are usually formulated based on prospective user

input and external regulations with which the system must

comply. The result is a collection of statements, some very

specific, and some general, upon which the system design is

based. This collection, for example, will generally include

edit requirements for input data, algorithms to be used in

calculating elements of output, specifications of the frequency

of output and its format, and the budget or resources allocated

for design, development, and operation of the system. Since

many successful computer-based systems have been designed and

implemented on this basis, this traditional approach appears

to be at least satisfactory for some applications. On the

U6

other hand, a substantial number of computer-based systems

have failed to achieve acceptance following the same approach.

Why does the design process produce successful forms in one

instance and not in others, when the same basic (traditional)

methodology is employed, perhaps even by the same designers?

The process of computer-based systems design is, re-

calling Alexander's terminology, a "selfconscious" one. That

is, the designer is not concerned directly with the particu-

lar context of the design problem at hand, but rather with

an abstraction of the context. This is articulated, in the

traditional approach, through a language which comprises

those verbal disciplinary concepts peculiar to computer-

based systems design. As Alexander suggests, use of such a

language can bias the designer's picture of the design problem.

Bias is introduced primarily by the "preclustering" of points

of potential misfit into a single verbal concept, such as

"response time" or "audit trail". In some design problems,

this preclustering may be appropriate--verbal disciplinary

concepts may be adequate to describe the structure of the

context to which the form will be fit. In other, perhaps

superficially similar design problems, however, the same pre-

clustering of misfit variables may turn out to be inappropriate

for independent design choices--a bias has been introduced.

The following examples from JUMPS illustrate this point.

(a) JUMPS systems specifications . The basic

kl

document providing for the development of JUMPS ^ contains

more than 150 separate specifications for design of the

system. Approximately 23 of these can be considered as

pertinent to the portion of the JUMPS-context boundary des-

cribed above and depicted in figure l\.i the JUMPS-Commanding

Officer/Administrative Office and the JUMPS-member interfaces.

Two representative examples of these specifications are: ^

When local input to the centralized site is released
from the local level, unaccompanied by supporting
documentation, it will be suspended to ensure trans-
mittal of the required documentation.

Transactions common to both military pay and personnel
systems will be input using single source, source data
automation techniques and will be entered in both
systems on the same basis, whenever practicable.

The language of these specifications is clear, as is the

intent. The first presumable will insure that unsupported

transactions are not allowed to update internal system 1 s

files. The intent of the second is two-fold: to reduce

clerical workload at the local level, and to achieve compa-

tibility between the personnel (MAPMIS) and JUMPS data bases.

The important observation here is that both these specifica-

tions are included to avoid potential problems, or misfits,

in the operation of JUMPS, which the designers realized

through their experience could occur. The language of the

specifications, while meaningful in the disciplines of data

processing or computer science, is not specific to the actual

design problem at hand. The specifications attempt to specify

how misfit can be avoided without examination of the nature

of misfit in this particular implementation.

Considering the first specification, we may ask why

some input might be unsupported. What sort of misfits might

be created by insisting on such documentation? Is the docu-

mentation difficult to prepare? Are the timing requirements

for the input such that supporting documentation cannot be

prepared in the same time frame? With regard to the second

specification, we might expect misfit to occur for a variety

of reasons; Is the organization of the local office such

that responsibility for preparation of both personnel- and

pay-related transactions reside with the same person? Can

local units support or maintain the source data automation

equipment required? Are the time frames for input to both

MAPMIS and JUMPS similar? The point here is that while a

system can be designed to meet these specifications, the

structure of the actual design problem (the point of potential

misfit specific to this application) is not apparent from the

specifications. The specific points of misfit are precluster-

ed by these design specifications. Even if both of the

specifications are met, several misfits could result, as

suggested above. The point is that the structure of the

design problem has been distorted by employment of tradition-

al verbal concepts in its description.

The 23 JUMPS specifications pertinent to the portion of

the JUMPS-cor xt boudary mentioned above are listed in

Appendix 1. -;se specifications will be used as the basis

1*9

for the development of misfit variables along the JUMPS-

context boundary of figure I4.. It will be remembered that

the selected systems interface for JUMPS (upon which the

specifications in Appendix 1 were predicated) differs from

the form-context boundary defined above, and are therefore

incomplete.

Traditional systems specification definition may result

in a successful form if by accident no stress between form

and context results. What the above JUMPS example attempts

to convey is that the language employed in this traditional

approach to avoiding misfit is too general to provide an

adequate understanding of the structure of the problem facing

the designer, the generality due to the implicit "precluster-

ing" of misfit variables. If a system is successfully designed

following this approach, the designer can take credit only

for meeting specifications, not necessarily for understanding

the structure of the actual design problem itself. The

language of specification and design requirements offer the

designer an abstract, but biased picture of the problem. What

?6we need, suggests Alexander,

is to make a further abstract picture of our first
picture of the problem, which eradicates its bias
and retains only its abstract structural features;
this second picture may then be examined according
to precisely defined operations, in a way not
subject to the bias of language and experience.

This "further abstract picture" is based on the selection of

a set of misfit variables appropriate to the context and form

50

to be designed. The "precisely defined operations" are those

of a formal decomposition algorithm operating on this set.

(3) Selection of misfit variables . We have devel-

oped above the idea of how a computer-based system inter-

acts with its context and the ways in which these interactions

might result in a stressful, or misfit, condition between

form and context. The question facing the designer at this

point is the articulation of the set of such points of poten-

tial misfit, the misfit variables. Let us consider the

qualifications which the statements of misfit variables must

meet.

(a) Well-understood . For a misfit variable to

be useful to the designer, he must have a clear understanding

of what conditions must be met to avoid misfit. That is,

the designer must be able to envision, for any given misfit

variable, a form which would achieve fit at that point.

(There are two issues here --estimation of the condition

necessary to avoid misfit, and a statement of this condition.

Different designers may have different estimates of the re-

quired condition. But given that the condition has been

estimated, the issue here is that the statement of the condi-

tion must be well-understood.) For some misfit variables,

the condition required to achieve fit may be stated unambi-

guously. These are those variables with which a quantitative

51

performance standard can be associated. This will be the

case for every misfit variable that exhibits continuous

variation along a well-defined scale. As an example of such

a misfit variable, we can consider a possible misfit in JUMPS

associated with the variability in the amounts paid a member

over several paydays. The designer here recognizes that

misfit will occur if a member's paycheck varies drastically

from payday to payday (when no transactions have occurred

against the member's pay account). (This situation is possi-

ble in a military pay environment because pay due a member is

often composed of several items of pay, some of which are

based on daily rates and others on a standard monthly rate.)

If the designer can specify the degree of variability allow-

able without misfit, he can construct a well-understood

misfit variable. For example:

Payments to a member cannot vary more than $1.00
between paydays, excepting variations attributable
to new transactions against the member's account.

Here "variability" is dependent on the particular system

designed, and it exhibits "continuous variation along a well-

defined scale", namely, a dollar (numerical) scale. The

variable is a useful one because the condition necessary to

achieve fit is well-understood--in this case, because a

performance standard can be specified.

This is not to suggest that the only allowable misfit

variables are those with which a performance standard can be

associated. Some of the most significant misfits (and those

52

most often neglected in traditional systems design) are not

quantifiable. Consider another example from JUMPS: One of

the functions of the system is to provide each member with

the status of his pay and leave account (a Leave and Earnings

Statement, or LES). The designer realizes that misfit can

occur if the LES is not understandable to the member. There

exists no well-defined scale along which to measure the

"understandability" of the LES, but this makes the potential

misfit no less significant. In this case the designer must

attempt to develop, in a commonsense language, what LET format

and content are required to avoid misfit. This may be accom-

plished by demonstration, or by determining some of the

characteristics the LES need posses to render it understand-

able: only common abbreviations used, all transactions and

payments identified by date and type, taxable and non-taxable

items of pay clearly separated. The point here is that the

designer must attempt to specify, as completely as possible,

the conditions to be met to avoid misfit. The fact that for

a qualitative variable such as this the conditions cannot be

quantitatively stated does not imply that they cannot be well-

understood. In Alexander's words, it is necessary that '

each variable be specific enough and clearly enough
defined, so that actual design can be classified
unambiguously as fit or misfit.

(b) Form-independent It is necessary that misfit

variables selected be stated in such a way that they do not,

53

a priori , determine the design of the form. As an example

of a misfit variable which is not form-independent, consider

a JUMPS design specification for the production of the

Leave and Earnings Statements

The Leave and Earnings Statement will be produced
solely from data contained in and controlled by
the pay account maintained by the central site.

While this statement is well-understood, admission of it as

a misfit variable may unnecessarily constrain the design.

If the designer is to have the flexibility in design required

to maximize fit along the many points of interaction on the

form-context boundary, the misfit variables he considers

must be insofar as possible, form-independent. That is, the

structure of the system to be designed should not be directly

motivated by the statement of a particular misfit variable.

In this example, the designer must attempt to restate the

specification by isolating the misfit it attempts to avoid,

in a more form-independent manner. One possibility would be:

The Leave and Earnings Statement should reflect the
actual status of the member's pay account maintained
at the central site.

This clearly provides the designer with greater latitude.

Some information maintained at the local level might be

included on the LES, or the LES might be produced locally

based on information provided by the central site. (It may

turn out, however, that the form suggested by the original

specification is the one which best satisfies this and

other misfit variables.)

a.

Given these qualifications, the designer can begin to

select misfit variables. The starting point in this process

is the considerations of the existing forra(s) which the

system will replace (or from which it will displace function).

Organizational components of the context are studied to iso-

late both points of misfit and fit with the current form for

those interactions supporting existing functions which the

system will assume. The designer will thus proceed around

the selected form-context boundary, examining all information,

control, financial, and other interactions "in place". At

those points of misfit, the designer must attempt to make a

specific statement of the misfit variable, one that is both

well-understook and form-independent. In information inter-

action, for example, the designer must isolate the specific

source of any current apparent stress: Does the misfit arise

due to content, or is the problem due to incompatability

between (existing) form(s) and context along some information

characteristic dimension (timeliness, accuracy, frequency,

level of aggregation)? The current points of fit at each

interaction must also be evaluated, and a statement of poten-

tial misfit developed. For these existing interactions,

the performance standard associated with the misfit variables

is directly available from observation of the performance of

the existing form(s).

For those functions which currently exist and will be

displaced by the system to be implemented, misfit variables

can be selected based solely on conditions observable at the

selected form-context boundary. But for new systems func-

tions or for new systems support functions, the designer has

no such facility. Alexander's approach in this case is less

29than precise:

if we try to design something for an entirely new
purpose. . .the best we can do in stating the problem
is to anticipate how it might possibly go wrong
by scanning mentally all the ways in which other
things have gone wrong in the past.

It can be argued that the major difficulty in computer-based

systems design is in the specification of systems require-

ments for performance of new function, and that it is in

this area that Alexander offers the least insight. We have,

however, by extending Alexander's approach to general design

to the specific design process in computer-based systems,

provided some focus to his suggested search for potential

misfit in new functional systems development. In selecting

the form-context boundary, the designer has identified

specific organizational components and specific types of

interactions necessary to support the new function. He is

aware of the ways in which misfit might occur in these inter-

actions. In considering a new control interaction, for

example, the organizational component (in the context) would

be analyzed to determine the standards the system must meet

in terms of such variables as robustness and communic ability.

A specific statement of the potential misfit must be made,

together with the condition required to avoid misfit. In

addition to information and control, the designer is aware

of and considers other interactions which have impact on

the systems design--the legal or internal requirements the

system must meet in performance of a new function.

What Alexander does provide, then, (as extended by the

considerations developed above) is a framework which focuses

the designer's attention on both the locality of potential

misfit (the form-context boundary), and the types of poten-

tial misfit (the interactions between the form and context).

(i|) JUMPS application . To illustrate the general

approach just outlined, this section developes an initial

set of misfit variables appropriate to the portion of the

form-context boundary depicted in figure I4. above. Because

a complete description of this boundary is not available,

the misfit variables developed below are based on the JUMPS

systems specifications listed in Appendix 1, As will be

remembered, these specifications are not exactly aligned

with the form-context boundary, but were based on the

systems interface assumed in figure 1,

We can first consider the interactions between the

Commanding Officer/Administrative Office and the manual

payroll system which support existing functions which JUMPS

will displace. We attempt to state, in as well-understood

and form-independent manner as possible the conditions necess-

£6

ary to avoid misfit in each interaction.

Pay authorizations ; Pay authorizations are the means by

which member's pay accounts are adjusted. In their prepara-

tion, two persons outside the administrative office may be

involved: the Commanding Officer for certain pay authoriza-

tion certifications (for those related to specialty or

proficiency pay), and the member, when required to certify

contract-related entitlements (such as those which may accrue

to the member upon reenlistment) . We include these "require-

ments" as the first two misfit variables:

1. Commanding Officers should certify certain pay
authorizations.

2. Members should certify their elegibility for
certain pay entitlements.

Another consideration is that pay authorizations must be

easy to prepare in the administrative office. We make a

statement of the potential misfit (but defer the "well-

understood" qualification until later)

:

3. Authoriizing documents must be simple to prepare.

For reasons similar to these, other misfit variables pertinent

to this interaction between JUMPS and its context can be

stated:

I4.. Mail service should be employed as the mode of
input from deployed units.

5. Pay authorization preparation should not be the
highest priority work in the administrative
office.

6. Administrative office personnel should not be re-
quired to receive formal training for pay
authorization preparation.

57

7. The vehicle for pay authorizations must easily
accommodate new or expanded reporting require-
ments (such as new items of pay).

8. Facility should be provided for reporting of pay
authorizations applicable to all members at
a given unit in a single transaction, when
such authorizations are based on a change in
the unit's status.

9. "Minimize" conditions must be observed in use of
Naval messages.

10. Pay authorizations must be input(received by the
central site) not later than three days after
their effective date.

11. JUMPS should not require significant additional
space in local administrative offices for
records or equipment used in pay authorization
preparation.

12. Sufficient documentation must be retained at the
administrative office level to allow for audit
and possible re-input of erroneous transactions.

13. Pay authorizations must be preparable based only
on on-board information.

This first set of misfit variables relates only to the

information interaction "Pay authorizations". Such an inter-

action exists in the current manual pay system between the

Commanding Officer/Administrative office and the personnel

office, the latter having now been included as part of the

form to be designed. Although the interaction being consi-

dered is informational in nature, the content of the informa-

tion is n<
; given by the misfit variables developed above.

Misfits ited to content will be developed during consider-

ation of trie JUMPS-NAFC portion of the form-context boundary,

since the NAFC determines the information required for each

58

item of pay and allowance, based on applicable legislation.

These misfit variables relate generally to the conditions

which must be satisfied to achieve fit in the operation of

the administrative office. Some of the variables relate to

the participants required for preparation of the pay authori-

zations (1,2,13); others to the modes and timing of the input

(lj.,9,10)j the allowable priority of the work and the capabi-

lity of the personnel assigned to authorization preparation

is addressed (3,5,6); the potential for misfit if the format

of the input is not sufficiently flexible to allow changes

in reporting requirements is covered (7); and other variables

describe restrictions on space for equipment, documentation

and forms (11), the need for local audit (12), and "unit

authorization" (8).

This set of misfit variables represents the first

attempt at identifying the potential misfit conditions

relevant to an existing interaction. The next interaction

considered, also informational in nature, supports a new

system function--provision of member leave and pay account

status to the Commanding Officer/administrative office.

Account status :

llj.. Leave and pay account status must be provided
at least monthly.

1^. Leave account status should include, by member,
current leave balance, leave taken, and leave
lost.

59

16. Pay account status must include, by member,
pay and allowance items authorized, foreiture
or checkages of pay, and all one-time entitle-
ments (such as bonuses).

i

17. Information should be provided to verify all
member receipts/detachments.

18. Reenlistment eligibility must be provided, by
member.

19. Account status should be easy to interpret.

The content of the information provided can be directly

specified here, as can its timing and aggregation, since

this will not be specified at any other point on the form-

context boundary. We consider next the control interactions

(neither previously existing) between the Commanding Officer/

administrative office and JUMPS.

Payday schedule :

20. Commending Officers have the option of re-
scheduling regular paydays based on oper-
ational unit schedules.

21. Rescheduling requests should be directed to
the disbursing office providing support to
local unit.

22. Rescheduling requests should include a unit
identification and a requested date of
payment.

Error notice :

23. Erroneous or questionable entitlement authori-
zations should be returned to the local unit
at which correction can be accomplished.

21].. Request for correction should be specific as to
the condition for rejection by the central site.

2$. Correction of erroneous input must be accomplished
within the same time frames as new input.

60

26. Feedback should be provided to local units
regarding the accuracy and timeliness of
authorization preparation.

Having developed an initial set of misfit variables

describing the Commanding Officer/administrative office-JUMPS

interactions, we next consider interactions between JUMPS

and the member:

Member change requests :

27. Members must have easy access to JUMPS to
initiate pay account changes (allotments,
withholding rates).

28. Members should need to have no formal training
in military pay procedures.

Payments :

29. Members should be able to specify the mode of
each payment (either cash or check).

30. Pay amounts should be predictable.

31. The Disbursing Officer under whose symbol pay-
ments are made should be solely accountable
for their propriety.

32. Authorized special payments should be accomplished
on the day of request.

33. A member should be able to designate a recipient
of his pay or portion thereof,

31].. Paydays should be regularly scheduled.

3£. Members in transit (between duty stations) should
be able to receive payment of any and all monies
which may be due them.

36. A member should not be required to receive all
pay due him on any payday.

37. Members should be able to request that their pay
be deposited directly in a financial institution.

61

Account status ;

38. Members must be provided with the status of
their pay and leave accounts at least monthly.

39. Pay and leave account status must be sufficient
to predict pay due and leave available for at
least the month after issue.

I4.O. Account status must be easy to understand,

lj.1. Account status must be identical to that provided
to the Commanding Officer/administrative office
(for similar data items).

1|2. Distribution of account status to members cannot
require a significant effort at the local unit.

Special pay requests ?

I|3. Approval of special pay should be the perogative
of the Commanding Officer.

i|lj.. Special payments must be limited to monies actually
earned through date of payment.

J+5. Special payments should be normally discouraged.

These Ij.5 misfit variables represent an initial estimate

of potential conditions for misfit along a small portion of

the form-context boundary. The number of misfit variables

will increase significantly as interactions with other com-

ponents on the boundary are considered, particularly those on

the JUMPS-NAFC and JUMPS-MAPMIS portions of the boundary.

When all portions of the boundary have been considered, the

process of misfit variable selection ends with a collection

of well-understood, form-independent statements of potential

misfit. The collection will be considered the set of misfit

variables for the design problem at hand. The structure of

62

the problem is in a sense estimated by this set of misfit

variables, and, as will be seen, by the interdependencies

among these,

d. Derivation of a "suitable set" of misfit variables .

Before the dependencies between the selected misfit variables

are estimated, it may be necessary to modify these to meet

the restrictions imposed by the formal decomposition algorithm

to be applied. To support the assumptions and restrictions

of the algorithm employed by Alexander, the selected set of

misfit variables must meet three conditions, which is achieved

by manipulation of the initial set of misfit variables into

a "suitable set".

(l) Equal scope . As described above, the algorithm

for decomposition of the set M (the misfit variables) employed

be Alexander treats each member of this set as a binary

stochastic variable. With each variable, X., there is asso-

ciated a probability of misfit (P(X.=0)=Pj) . It is clear,

in a real-world context, that achievement of fit is not

equally probable for all selected misfit variables. However^

If we allowed the p^ to be different for different
variables X^, we should have to bring this into the
following analysis, which would lead to very com-
plicated equations, and make it impossible to find
a simple and general basis for decomposition.

Therefore we restrict p^ to be equal for all i. What this

63

implies is that, of all possible forms of which the designer

can conceive, the fraction which achieves fit should be

roughly equal for each selected misfit variable. 1 The

variables, in other words, need to be selected so that they

are approximately equal in scope. Consider two JUMPS misfit

variables included in the initial set developed above:

33. A member should be able to designate a recipient
of his pay or a portion thereof.

37. Members should be able to request that their pay
be deposited directly in a financial institution.

That these variables are not equal in scope can be demonstrated

by considering the nature of the forms required to achieve

fit at each misfit variable. Because the first is broader

in scope than the second, any form resulting in fit with the

first insures fit with the second: If a member can designate

(any) recipient of (any) part of his pay, he can certainly

have his pay deposited at a financial institution. The con-

verse, however, is not true. To meet this restriction of

"equal scope", the original misfit variables must be restated:

33a. A member should be able to allot any (fixed)
portion of his pay on a continuing basis
to a designated individual or institution.

37a. Members should be able to request that the
balance of unalloted pay due be deposited

directly in a financial institution on a
continuing basis.

Restatement of misfit variables to achieve equality of scope

is the first step in the manipulation of the initial set of

misfit variables into a suitable set.

61+

(2) Partial independence . We will be interested

in estimating the degree of interaction between selected

misfit variables. In Alexander 1 s decomposition algorithm,

these interaction estimates will be taken (after normaliza-

tion) to represent the two-variable product moment correla-

tion between pairs of stochastic variables. The mathematical

treatment of decomposition requires that this correlation

be suitably small. What this implies to the designer is that^

we must be satisfied that the variables are as
independent as we can get them to be.

For example, two of the initial JUMPS misfit variables are;

30. Pay amounts should be predictable.

39. Pay and leave account status must be sufficient
to predict pay due and leave available for at
least the month after issue.

As currently stated, the two misfit variables are highly

dependent, although they were generated to accommodate fit

along two independent dimensions: to insure against arbitrary

variability in pay amounts, and to allow a member to -predict

the amount of pay he is due based on a statement of his

account status. We might therfore restate the first variable:

30a. Payments to a member should not vary significantly
between paydays, excepting variations attribu-
table to new transactions against the member's
account.

The second step in establishing a suitable set may require

restatement of the initially selected variables so that they

are at least partially independent.

65

(3) Specific and detailed . Implied in both the

above conditions is the notion of specificity of the mis-

fit variables. The statements of misfit must be' as specific

as possible for two reasons: First, Alexander's decomposition

algorithm ignores any third- or higher-order interactions

between variables. What this implies is that-^2

the two-variable correlation for any pair of variables
must be independent of the states of all other variables.
Since the state of one variable is most likely to affect
the correlation between other variables, if that one
variable is wide in scope the best we can do in satisfying
this is to make all the individual variables as specific
and minute as possible.

Second, the broader the statement of misfit, the less removed

the decomposition will be from the designer's initial "verbal

concept" picture of the problem. The designer must question

each misfit variable identified to see if a more specific

statement (or several statements) of misfit can be made.

Consider the JUMPS misfit variables

3. Authorizing documents must be simple to prepare.

The variable is too general to provide much insight into the

specific nature of the potential misfit. After further

investigation into the demands of the context, we could'

expand this variable to detail more precisely the points of

potential misfits

3a. A common format for all pay authorizations should
be utilized.

3b. An error recognized during pay authorization
preparation should be correctable "in place".

66

3c Abbreviations and codes used in pay authorization
preparation should be easily understandable.

3d, Facility should be provided for one-time entry of
identical data elements applicable to a series
of pay authorizations which are prepared at the
same time.

3e. Pay authorizations should be event-oriented,
rather than entitlement-oriented.

This last misfit variable requires some explanation. In a

military pay environment, an "event" is defined as a change

in a member's status: a member reports to a new duty station,

is promoted, or goes into an unauthorized absence status, for

example. Several different entitlements (items of pay) may

be affected by a change in the member's status. The event of

"a member reports for duty aboard a submarine" will begin

credit for Sea Duty Pay and Submarine Pay, and terminate

credit for Subsistence Allowance. In general, the specific

effects of an event on the set of entitlements due a member

can only be determined by application of the complicated and

detailed pay procedures then in effect (as published by the

Navy Accounting and Finance Center). By requiring pay

authorizations to report only events, rather than specific

changes in entitlements generated by the event, the degree

of training and expertise required in the administrative office

is reduced, and the preparation of pay authorizations is

simplified.

The designer's last task in establishing a suitable set

of misfit variables is to review those variables initially

67

identified and restate these in the most specific and

detailed manner possible:

The more specific and detailed we make the variables,
the less constrained G(M,L) will be by previous con-
ceptions, and the more open to detailed and unbiased
examination of its casual structure.

We have begun above to manipulate the initial set of

JUMPS misfit variables into a suitable set, one which con-

forms to the constraints imposed by the algorithm to be

employed for its decomposition. We can proceed in this

fashion, modifying the initial set to meet the conditions of

equality of scope, partial independence, and specificity

required. In addition to the modifications made above,

the following additional variables are derived:

19a. Account status provided to administrative offices
should use only common abbreviations and codes.

19b. Automatic entitlement changes (pay and allowances
related to longevity) mu3t be clearly indicated.

19c. Extraordinary account status conditions should
be highlighted (excess leave, overpaid status).

19d. A clear indication of the origin of a current
change in the member's account should be
provided.

19e. Summary or trend information regarding the rate
at which members assigned to a unit use leave
should be provided.

27a. Members should not need to be aware of the current
tatus of their accounts to request allotment
r withholding rate changes.

27b. Members should not be required to use special
equipment to initiate pay account changes.

68

30a. Payments to a member should not vary significantly
between paydays, excepting for variations attribu-
table to new transactions against the members 1

account.

I(.0a. Disposition of all amounts withheld from a member's
pay must be clearly indicated (taxes, allotments,
insurance, and other checkages).

I+Ob. Codes and abbreviations used is describing account
status should be easily understood or explained
on the document containing the status.

Ij-Oc. Explicit statement of all payments made (both
locally and centrally) as to date and amount
must be provided.

[j.0d. Expiration date of limited entitlements must be
indicated.

l\.0e, "Balance brought forward" and "balance carried
forward" amounts must agree on successive
reports of pay account status.

The original L|_5 misfit variables have been expanded to

the 68 now in the suitable set. This example illustrates that

derivation of a suitable set of misfit variables can require

significant manipulation of the originally selected variables.

Moreover, the 68 misfit variables identified here only describe

a small portion of the JUMPS-context interface. The JUMPS-NAFC

interface, or boundary, will contain a much larger number of

potential misfit variables, as it is across this portion of

the form-context boundary that the system's fit with the legal

requirements for certification and processing of all pay and

allowance items is specified. While derivation of the complete

set of misfit variables for the JUMPS application is beyond the

scope of this paper, some idea of the potential number of these

69

is available from review of the JUMPS systems requirements.

At the JUMPS-NAFC interface alone, approximately 16,000

seperate processing requirements would need to be considered.

While this number might be reduced somewhat by careful selec-

tion of misfit variables, the number of misfit variables in

the complete set for this design problem is likely to exceed

20,000. Thus the designer 1 s task in establishing a suitable

set of misfit variables is likely to be a far more substantial

undertaking than this abbreviated JUMPS example may indicate.

e. Misfit variable interactions . The most significant

distinction betwen Alexander's proposals and traditional

systems specification definition is the explicit recognition

by the former of the interrelationships between design

requirements. It is the articulation of these interralation-

shlps which define the set of links, or misfit variable inter-

actions that in turn provides structure to the design problem

and enables its subsequent decomposition. This section

investigates the nature of these links in a computer-based

systems context and suggests an approach for use in estimating

the links between bariables in the suitable set.

(1) The nature of misfit variable interactions .

The notion that achievement of fit at one point on the form-

context boundary may make it easier or more difficult to achieve

70

fit at another is a common one to most designers. In compu-

ter-based systems, we can consider the concepts of "tradeoff"

and "concurrence". For example, a common tradeoff facing a

programmer is between execution time and memory requirement

for a particular block of code. From a slightly broader

perspective, he may be concerned with the tradeoff between

efficiency of code and maintainability. A designer may con-

sider two requirements: one to provide a user with a facility

for accessing the "current time", and another to develop a

mechanism to allow for charging of computer usage. The designer

in this case may see a concurrence between the two requirements,

in that a form which accomplishes the first (typically through

a raacroinstruction facility) will make it easier to accomplish

the second (by basing usage on time and using the same facility

to determine this).

The common thread of these examples is that tradeoffs

and concurrences, or interactions between sources of poten-

tial misfit, exist because of the structure of the form

employed. In other words, the designer, through experience,

realizes that the logical or physical structure of the forms

he has constructed in the past have been such that tradeoffs

or concurrences between different requirements have been

evident.

Interactions motivated by logical structure : Here the

designer may consider interactions oossible due to the nature

71

of the logical components chosen to perform a given function.

The designer may be considering the tradeoff between "ease of

use" and "flexibility" in a control interaction at some point

between form and context. A system designed to support the

first might be implemented as a small set of cammand variables,

invoked by use of a lightpen on a video display screen. The

conflict between this logical implementation and the require-

ment for flexibility is evident: the user's scope of control

is limited to a specific set of interactions with the system.

The conflict, or tradeoff, arises through choice of form. The

designer is sware of requirement interaction because the logi-

cal structure of the forms available suggest such an interaction.

Interactions motivated by physical structure : Consider

for example a systems implementation on a processor operating

under a fixed partition, multiprogramming operating system.

The designer may be considering two requirements: First,

that an internal automated routine be provided for correction

of erroneous transactions, and, second, that the system not

require operator intervention for scheduling. The designer

may see an interaction (in this case a tradeoff) between these

two requirements with which the physical implementor (the

programmer) will be concerned. The degree of automated correc-

tion achievable will depend in part on the size (in terms of

memory requirements) of the error correction routines. Operator

intervention will be required to reallocate partitions if the

12

program size exceeds the largest partition allocated in

normal operations. A tradeoff is required here, but the

necessity for it is based on the underlying technology, or

physical structure, of the form. If the operating system

employed an alternative memory management scheme (demand

paging, for example), no operator intervention would be requir-

ed regardless of the size of the error correction routines.

In this case, there would be no interaction between these two

requirements, although other interactions, appropriate to the

technology of this form, may be evident.

These examples are insufficient to define formally the

nature of misfit variable in teraction in computer-based systems,

but they do suggest that such interactions exist, and are arti-

culated through the designer's experience with the technology

and logical properties on which these systems are based. In

Alexander's words,

We shall say that two variables interact if and only if
the designer can find some reason (or conceptual model)
which makes sense to him and tells him why they should
do so.

(2) Estimation of misfit variable interactions .

Having defined a suitable set of misfit variables, and being

aware of the nature of the potential interactions between its

members, the designer is in a position to estimate these, to

establish the set of links L. Hierarchical decomposition allows

the designer to consider both the direction and magnitude of

73

these links, by assigning a signed weighting to each inter-

action he sees possible. The strength of interaction can be

viewed as the potential for concurrence or conflict (tradeoff)

in achievement of fit for two variables based on the nature of

the forms available. If the designer considers that the inter-

action is significant for only a few types of possible form

designs, he may consider the interaction a weak one. If almost

every conceivable form results in a conflict or concurrence

between the two variables, the interaction may be considered

strong. It is of course theoretically possible to evaluate the

strenght of interactions far more specifically. Alexander

suggests, however, that

In practice we shall, at best, be able to distinguish
two or three strengths of interactions.

We will consider only two strengths of interaction between

misfit variables of the suitable set: "weak" and "strong".

This distinction is an arbitrary one, but one which intuitively

may be the easiest to implement. It is also noted that the

direction of the interactions (conflict or concurrence) need

not be specified for decomposition by the algorithm employed

by Alexander. While the reason for this is embedded in the

mathematics of the decomposition algorithm, the result is

intuitively appealing, in that we would expect the decomposi-

tion to depend only on the magnitude of the interaction between

variables, rather than on the direction of interaction.

7k

(3) JUMPS misfit variable interactions . We

estimate the interactions between the variables in the

suitable set by considering each variable's potential for

concurrence or conflict with every other variable. To

illustrate this, we will consider only the interactions

between variables in a subset of the JUMPS suitable set of

misfit variables selected above. This particular subset

was chosen because the density of the links between variables

is such that the set is amenable to decomposition. This

subset will include the variables:

3a. A common format for all pay authorizations should
be utilized.

3e. Pay authorizations should be even-oriented, rather
than entitlement-oriented.

l±. Mail service or Naval messages should be employed
as the mode of input from deployed units.

6. Administrative office personnel should not be
required to receive formal training for pay
authorization preparation.

7» The vehicle for pay authorizations must easily
accommodate new or expanded reporting require-
ments (such as new items of pay).

8. Facility should be provided for reporting of pay
authorizations applicable to all members' at a
given unit in a single transaction, when such
suthorizations are based on a change in the unit's
status (such as upon entering a combat zone).

9. "Minimize" conditions must be observed in use of
Naval messages.

13. Pay authorizations must be preparable based only
on on-board information.

75

23. Erroneous or questionable entitlement authoriza-
tions should be directed to the local unit at
which correction can be accomplished.

2lj.. Request for correction should be specific as to
the condition for rejection.

25>. Correction of erroneous input must be accomplished
within the same time frames as new input.

We begin by considering potential interactions between

misfit variable 3a, the need to employ a common format for

pay authorization input, and each other variable in the set.

This is accomplished by construction, if possible, of a

conceptual model in t/hich avoidance of misfit at variable 3a

would make avoidance of misfit at another variable easier or

more difficult to achieve. Such a model can be constructed

which "links" variable 3a with variable l\., the need to utilize

mail or Naval messages as the mode of input from deployed units,

motivated by the underlying physical structure of components

of the design problem. The "link" is based on the fact that

Naval message transmission equipment can be programmed easily

to accommodate standard format messages, reducing message

processing time and message transmission errors. In this

case, the link between variables is a concurrence . We esti-

mate the strength of the link to be strong; , since this concur-

rence is evident in all possible forms, or possible systems

designs which could be employed. Variable 6, the need to

avoid requiring formal training of administrative office

personnel, ncurs with variable 3a» This link is based on

an intuiti ssumption that preparation of input in a single

76

format can be more easily learned than use of multple-formatted

input documents. The strength of this link is again estimated

to be strong , as this concurrence will be evident in almost

all possible forms. There is also a weak conflict between

variable 3a and variable 7, the need for flexibility in the

vehicle selected for pay authorization input. This conflict

is evident based on the logical structure of the design problem:

We reason that use of a single format for input will render

the future inclusion of new or expanded input requirements

more difficult. But because there are techniques available

to achieve fit in both variables simultaneously (perhaps

through multiple-use, variable length fields on input records),

this conflict is evident in only some possible forms. The

link is therefore weak. There appear to be no interactions

between variable 3a and the other misfit variables in the set.

Consider for example the potential for interaction between

variable 3a and variable 13, the need to prepare pay authori-

zations based only on on-board information. There seems to

be no conceptual model, either logically or physically based,

in which achievement of fit at one variable would make achieve-

ment of fit at the other either more or less difficult. The

need for a single format for pay authorization input and the

need to prepare this input based only on on-board information

appear to be totally independent, so no link can be established.

(A point of note here is that this independence is based on

77

the underlying assumption that each personnel/administrative

office has the same on-board information and will use the

same single format for input. These assumptions are, in this

case, valid, but one could easily imagine a situation—

a

design problem—in which these two variables could interact).

From this point on, we will not consider "non-links", but

confine the discussion to only those misfit variables which

can, in the JUMPS design problem, be linked through some

conceptual model. Variable 3a interactions can be summarized

as:

3a interacts with Ij.(+S), 6(+S), and 7(-W).

We next consider the potential interactions with the

second misfit variable in the set: J>e, the need for pay

authorizations to be event-oriented. The first interaction

is with variable 6 (no formal training). Based on logical

considerations, we can reason that, since reporting of events

(relatively fe* in number) is easier than interpretation of

the effect of the event on members' sets of entitlements

(which are numerous and complex), the two variables concur .

Since this reasoning would apply to all possible forms, the

interaction is strong . A weak concurrence between variable

3e and variable 7 (flexibility in input) is posited: Reporting

requirements (authorizations) for entitlements are subject to

change more often than reporting requirements relating to

events. (This is based on the fact that there exists a

78

relatively fixed number of events—member reports for duty,

is detached from duty, moves into government quarters, etc.

Changes in pay procedures in general modify only the "mapping"

of events into entitlements. It is therefore possible to

modify the entitlement structure completely and retain the

same reporting of events. The event-entitlement "mapping"

is achieved in an automated fashion at the central site,

rather than at the local level.) Thus the need to allow for

modifications in reporting requirements is facilitated by

employment of even-oriented input. The interaction is weak

in that future pay procedure changes could include definition

of new events. We also estimate there to be a strong

concurrence between varialbe 3© and variable 8, the need to

provide a facility for pay authorization input based on a

change in a unit's status. Because a unit status change is

interpretted as an event, this condition is most compatible

with an even-oriented reporting system. Variable 3e also

concurs with variable 13, the need to prepare pay authoriza-

tion input based only on on-board information. Since events

are well-defined and independent of a member's set of current

entitlements and previous status, no reference to a member's

account status need be made to prepare input. The interaction

however, is weak is that such information could be made avail-

able to the local administrative office. Variable 3e interac-

tions can be summarized as:

79

3e interacts with 6(+S), 7(+W), 8(+S), and 13(+W).

Considering next variable I4., the need to utilize mail

or message input from deployed units, we estimate an inter-

action between it and variable 9, the need to observe

"Minimize" conditions. ("Minimize" is a condition of radio

silence employed in war time circumstances or in exercises

designed to simulate these. Varying degrees of "minimize"

exist, all of which prohibit the transmission of routine admin-

istrative "traffic", which includes pay and personnel related

messages.) There is an obvious conflict between these variables,

but its strength is weak , in that mail-based input is available

as an alternative during "minimize". There exists a strong

conflict , however, between variables U and 25» the need to

accomplish erroneous input turnaround within three days. Mail

service to deployed units is notoriously poor (except for those

units with a high degree of air support, such as aircraft

carriers). Variable Ij. interactions can then be given as:

k interacts with 3a(+S), 9(-W), and 25(-S).

Turning to variable 6 (no formal training), we posit a

concurrence with variable 8 (facility for reporting unit

status changes). The conceptual model on which this inter-

action is founded is based on the structure of the pay pro-

cedures. Some unit status changes affect entitlements for only

a portion of the members assigned to a unit. (For example, when

a ship enters dry dock for a period in excess of 90 days, Sea

80

Duty Pay is terminated for all enlisted members, but officers,

who are never entitled to Sea Duty Pay, are unaffected.) By

allowing for a single report of a change in unit 'status,

administrative office personnel are not required to determine

which members of the crew underwent an "event", which reduces

requirement for formal training. The concurrence is weak in

that a system which allowed for separate input for all members

assigned could be achieved (with "event applicability" deter-

mined at the central site). Variable 6 interactions are:

6 interacts with 3a(+S), 3e(+S), and 7(+W).

All variable 7 (flexibility in input) interactions have

already been identified:

7 interacts with 3a(-W) and 3e(+W).

Variable 8 (facility for reporting unit status changes)

interacts with variable 2l\., the need to identify the specific

condition for input rejection. The model on which this inter-

action is based is less straightforward than those employed

above (and in fact may only be evident from the problems

actually encountered in the operation of JUMPS--a luxury not

available to the original JUMPS systems designers). A common

unit status change report is "Squadron S reported for duty

aboard aircraft carrier on date D". In attempting to "post"

such a transaction to each member 1 s account at the central

site, it may be determined that one member of Squadron S was

already in a duty status aboard the same aircraft carrier on

81

the date of the "event". The transaction is rejected, but

the cause of the rejection is not specific. The member may

have reported early as part of the squadron vanguard and this

event reported; the member may not have been properly detached

from previous duty aboard the aircraft carrier; the member

may have been part of an administrative or logistics unit

left aboard the carrier between squadron deployments. In

any case, use of unit status change input complicates the

error resolution process significantly, and the interaction

between these two variables is a conflicting one. The inter-

action is weak , because suitable modification to the "unit

change" input (such as exception basis reporting) could alle-

viate this problem. Variable 8 interactions are:

8 interacts with 1|(+S), 6(+W), and 2i|(-W).

Variable 9 ("minimize") interacts with variable 25

(error turnaround requirements), for reasons already stated.

The interaction is a strain conflict because any system includ-

ing message-based input is unlikely to meet the error turn-

around requirements during "minimize" conditions.

9 interacts with i|(-W) and 25(-S).

Variable 13 (pay authorization preparation based only on

on-board information) interactions have already been identified:

13 interacts with 3e(+W).

The need to return erroneous input to the local unit at

which correction can be accomplished, variable 23, concurs

82

with variable 2k (identify specific reject condition). A

system which can detect the reason for rejection specifically

facilitates identification of the local unit at Which correc-

tion can ba accomplished. The interaction is weak , because a

system could be implemented which returned erroneous input to

all local units which might possibly be able to correct the

error. Variable 23 also concurs weakly with variable 25

(error turnaround requirements), in that this requirement

will more likely be achieved if the appropriate local unit

to which the error should be returned can be identified:

23 interacts with 2l|(+W) and 25(+W).

Finally, variable 2k (identify specific reject condition)

concurs strongly with variable 25 (error turnaround require-

ments), for obvious reasons.

2k interacts with 8(-W), 23(+W), and 25(+S).

The interactions concerning variable 25 (error turnaround

requirements) have already been identified:

25 interacts with Lj.(-S), 9(-S), 23(+W), and 2l|(+S)

.

A summary of the interactions between variables of this

subset of JUMPS misfit variables is provided in tabular form

in figure 5»

Having identified both the elements of the set M, and

the set of interactions between these, L, a graph of the

design (sub)problem can be drawn, as in figure 6. The misfit

variables are identified as nodes of the graph, and the inter-

83

co

•H
u
a
>

CO

-P
•H

CO

-P
o
co

o
•p
C
•H

CM
CO

1

CO
1 +

CO
+

, |

-d-
(M » +

mmx^
CO tgi

+
1

CM 1 +
^ i+

1

rH
;

O
1

-

CO i

oo

e

CO
+ + 1

1

r-
1 +

•I

v£>

+
CO
+

i

+

-H-

+
!

|

1

co
1

** ' & V,

CO
+

^3
+

CO
+ +

L;

i

co
+

co
+

^5
1 HI Baa^HTis

co

C
o
•HP
O
co

•P

rH

CO

•H
rH
CO

>
-P
•H
<M
CO

•H

co
P-.

<D

5
•H
fin

CO <D
CO

vD I
s- CO O

rH CM OVJ

UN
CM

exqBiaBA q.ijsx^

*k

actions as the links between them. Figure 6 provides little

insight into the structure of the design problem, but by

redrawing the graph, as in figure 7, two clusters of misfit

variables become evident. (This simple, first-level decompo-

sition is accomplished informally, but by inspection it is

evident that figure 7 represents the best two-way partitioning

of the subset of JUMPS misfit variables. Application of

Alexander's algorithm would yield identical results.)

Figure 7 therefore suggests that the designer can consi-

der the two design problems independently, concerned only

with designing form to achieve fit within each of the separate

subgroups of misfit variables. It can be argued that this

decomposition provides the designer with little additional

insight, in that this particular segmentation of design

requirements is obvious without the mechanics of misfit var-

iable selection, interaction estimation and decomposition.

The reason for this is that the subset of JUMPS misfit variables

used in this example reflect only a small number of very

localized misfit variables. Decomposition of the entire set

of JUMPS misfit variables may result in variable clusterings

which are far less intuitive than that indicated by this ex-

ample. (It is interesting, even in this example, however,

that the misfit variables regarding the mode of JUT-IPS input

(2l and 9) are associated with input error variables rather

than initial input variables.) This example is not sufficiently

86

broad to demonstrate any significant deviation from the

"preclustering" suggested by the systems specifications listed

in Appendix 1,

One additional and significant point of note is the

number of misfit variable interactions which the designer

must consider in deriving the set of links, L, for the decompo-

sition. This number is given by n(n-l)/2, where n is the

number of misfit variables in the suitable set. For this 11

variable JUMPS example, SS potential links were evaluated, of

which 15 were considered significant and included in the set

L. Alexander provides a larger example^' which includes llj.1

misfit variables; 1391+ links were included in the set L for

this problem (of a potential total of 9870). For a vary

large suitable set of misfit variables, the potential number

of links which must be evaluated is very high. Based on an

estimated 20,000 variables in the complete JUMPS suitable set,

approximately 200 million links would need to be evaluated.

While a large number of these might be rejected out of hand,

the actual number of links established and included in the set

L is still very large. In the above example, the "link density"

(actual links in L/potential number of links) is 0,27. In

Alexander's larger example, the link density is 0.11|. These

two examples alone are insufficient to establish a general

relationship between link density and the size of the suitable

set. However, even a link density as low as 0.005 (28 times

88

less dense than in Alexander's example) would result in

approximately 1 million links in L for the entire JUMPS

design problem. Even if only these 1 million links required

active consideration by a JUMPS designer, and assuming they

could be each evaluated at the rate of one per minute, the

total task would require more than 16,000 man-hours. From

even these rough estimates it is obvious that Alexander's

methodology for hierarchical decomposition is, at best,

awkward when applied to very large systems.

89

IV Summary and Conclusions

This paper has demonstrated a partial application of

hierarchical decomposition to the design of computer-based

systems. Figure 8 summarizes the activities involved in the

application, and their objectives and criteria. Many of the

benefits to the designer of comouter-based systems have

already been discussed. There are two other benefits of

this methodology, however, which deserve mention.

First, hierarchical decomposition suoports, rather than

replaces, the heuristic approaches to design already availa-

ble. We have seen, for example, that the work of Little

(regarding important dimensions in form-context control

interactions) and Gorry and Scott Morton (important dimen-

sions in information interactions) provide a starting point

for the identification of misfit variables. It has also

been suggested that the process of estimating links between

misfit variables offers the designer a formal vehicle by

which his experience can be productively brought to bear on

the design problem at hand. What Alexander's methodology

represents is not a new and independent approach to design,

but rather a technique through which both existing heuristics

and experience can be more formally expressed. As such, it

can perhaps best be viewed as an effective facilitating

vehicle for design.

Second, it was suggested above that the context of a

90

1. Functional Specification .

Objective: Identify the functions which
the system will perform

Criteria: Consider:
-displacement of existing

function
-performance of new function
-new systems support function

2. General Boundary Positioning .

Objective: Identify organizational compon-
ents composing the context of
the design problem

Criteria: Context is formed by those organ-
izational components outside
the designer 1 s control which:

-currently interact with the
organizational components
whose function(s) the new
system will displace

-will interact with the new
system either in perform-
ance of new function or
for new systems support

3. Specific Boundary Positioning .

Objective: Identify specific interactions
between form and context

Criteria: Interactions may be:
-information
-control
-financial
-other

Hierarchical Decomposition Summary

Figure 8

91

k* Misfit Variable Selection ,

Objective: Identify points of potential
misfit in each form-context
interaction

Criteria: Misfit variable is a statement
of a conditions which if not
met results in stress in the
ensemble. They must be:
-well-understood
-form-independent

5. Suitable Set Manipulation .

Objective: Restatement of selected misfit
variables to conform to
requirements of decomposition
algorithm to be employed

Criteria: (For Alexander^ decomposition
algorithm)

:

-equal scope
-partial independence
-specific and detailed

6. Misfit Variable Interaction Estimation .

Objective: Estimation of dependencies
between all pairs of variables
in the suitable set

Criteria: -A pair of misfit variables is
"linked" by some conceptual
model available (introspectively)
to the designer, based on the
logical or physical problem
structure

-The strength of a link is deter-
mined by the relative number of
possible forms in which the
conceptual model holds

Hierarchical Decomposition Summary

Figure 8 (
-ntinued)

7 • Decomposition ,

Objective: Partitioning of the suitable
set of misfit variables into
nearly independent subsets,
each representing a design
subproblem

Criteria: Dependent on the decomposition
algorithm employed

Hierarchical Decomposition Summary

Figure 8 (continued)

93

computer-based system, rather than representing a stable

environment, is subject to considerable change over time.

It is now also recognized that computer-based systems have

relatively long lives—that once implemented, they are

expected to remain in place in an operational status for

some time. These two observations suggest that a success-

fully designed form must be easily adaptable to its changing
39environment. As Myers observes,

we can say that programs never achieve stability.
They never achieve freedom from bugs or from
additions or from changes.

Simon has speculated^" that successful adaptation, or evolu-

tion of form is facilitated if it is structured into fairly

independent subsystems. Such a structure would allow for

change to take place at a subsystem level, rather than

require extensive adaptation by the entire form. The objec-

tive of hierarchical decomposition is the identification of

nearly independent subsystems in the design problem. In

a more specific statement applicable to computer-based

systems, Myers has defined the dimensions along which such

independence is desirables independence in informational

and control interactions between subsystems. Since we

have based definition of misfit variables in exactly these

terms, we can expect that the resultant subsystems will be

as independent as possible along these dimensions. What

this implies for computer-based systems design is that the

solution to the design problem has been constructed in such

9k

a fashion so as to most readily allow for system maintenance

(correction of misfits) and expansion (to accommodate change

in the context)

.

While it has been demonstrated that hierarchical

decomposition can be applied to computer-based systems

design, it is apparent from the JUMPS example that this

application may, in some cases, be too lengthy a process to

be practical. The practicality of the application would

appear to depend largely on the nature of the computer-based

system to be designed. We can speculate that large systems,

in which many specific processing requirements must be consi-

dered (such as JUMPS), are not amenable to Alexanders metho-

dology, based on the sheer number of misfit variables and

variable interactions which must be defined or estimated.

In smaller systems, or ones in which such detailed require-

ments are not imposed, hierarchical decomposition may enjoy

more practical application.

In summary, this paper has suggested the potential for

the application of hierarchical decomposition to computer-

based systems design; a complete demonstration of this appli-

cation is, however, still wanting. Many questions and issues

remain to be explored in this area, principal araoung them

the characteristics of the design problem necessary for prac-

tical application of hierarchical decomposition. Efforts to

answer these questions, could, however, result in the avail-

ability of a powerful designs-aiding methodology for the

9S

computer-based systems designer.

96

V Notes and References

Christopher Alexander, Notes on the Synthesis of Form
(Cambridge: Harvard University Press, 1967).

2
Ibid., p. 15.

3Robert G. Murdick, "MIS Development Procedures,"
Journal of Systems Management , Dec. 1970, pp. 22-26.

Tlbid., p. 2k.

^Ibid.

Gordon B. Davis, Management Information Systems:
Conceptual Foundations, Structure, and Development (M cGraw-
Hill, 1971+), P. k2$.

7Glenford J. Myers, Reliable Software Through Composite
Design (Petrocelli/Charter, 197^)

•

o

John F. Rockart, "Model Based Systems Analysis: A
Methodology and Case Study," IMR (Sloan Management Review).
Vol. 11, No. 2 (Winter 1970), pp. I-I4.

9William R. King and David I, Cleland, "The Design of
Management Information Systems: An Information Analysis
Approach," Management Science . Vol. 22, No. 3> PP. 236-297.

10Both Myers (7) and W. P. Stevens, et. al., "Structured
Design," IBM Systems Journal , Vol. 13, No. 2 TSpring 197U),
pp. 115-139.

0. J. Dahl, et. a_l., Structured Programming (London:
Academic Press, 197277

IP
D. Teichroew, "Problem Statement Analysis: Require-

ments for the Problem Statement Analyzer (PSA)," ISDOS
Working Paper No. 1+3, Dept. of Industrial Engineering, Univ.
of Michigan, Ann Arbor, 1971.

•^Alexander, p. 18.

"^Requirements and Design for JUMPS in the 1980's,"
Military Pay Systems Department, Navy Accounting and Finance
Center, Washington, D.C., 1976, p. 1.

97

•^Ibid .. p. 98.

Department of the Treasury Transmittal Letter No. 53,
Sept. 28, 1970.

1?Department of Defense Instruction No. 7330.1]., Nov.
7, 1966.

i ft

See for example G. Anthony Gorry and M. S. Scott
Morton, "A Framework for Management Information Systems,"
Sloan Management Review . Vol. XX, No. X (Fall 1971) pp. 55-70,
or Davis (6), p. 207.

19Framework proposed by R. N. Anthony, Planning and
Control Systems: A Framev/ork for Analysis (Boston: Harvard
University Graduate School of Business Administion, 1965)

20Davis (6), p. 203.

21
J.D.C. Ldttle, "Models and Managers: The Concept

of a Decision Calculus," Management Science , Vol. 16, No. 8
(April 1970), pp. B-i|66-B-lTH^T"

"Policy and Procedures Manual for Guidance of
Federal Agencies," General Accounting Office, Washington
D.C., Titles 2 and 6.

^"Management of Automated Data Systems Development,"
Department of Defense Instruction 5010.27, July 8, 1970.

^Department of Defense Instruction 7330.3 (17),
superseded by Department of Defense Instruction 7330. 1+a,

July 1, 1977.

25-

Alexander (1), p. 77.

' ibid . . pp. 2, 224.

•

27 Ibid., p. 99.

28DoD Instruction 7330. Ij., p. 7.

29Alexander (1), p. 102.

3 ° Ibid., p. 175.

31Ibid. , p. III4-

32.
Ibid.

98

33Ibid., p. 115.

\En fact, more than 16,000 separate processing require-
ments were considered. Documentation for these requirements
is in the form of decision-logic tables, in the "JUMPS Design
and Requirements Manual," Navy Finance Center, Cleveland, Ohio,
1976.

-^Alexander (1), p. 109.

36Ibid .. p. 111.

37Ibid .. p. 186

38Ibid., pp. 136-173.

39Myers (7), p. k*

^° H.A. Simon, The Sciences of the Artificial (Cambridge:
MIT Press, 1969).

^yers (7), p. 33.

99

APPENDICES

100

Appendix 1

The JUMPS misfit variables selected in chapter 3 are

based on the following systems specifications for JUMPS,

which were originally contained in Department of Defense

Instruction 7330. t|., "Requirements for Development, Test,

Evaluation and Installation of the Joint Uniform Military

Pay System (JUT-IPS)" dated November 7, 1966. The parenthe-

sized number after each specification refers to the numbering

of these in the original document.

1. Individual members of Military Services will
be paid on regularly scheduled paydays for
two pay periods each month. The pay periods
will end as of the 15th and the last day of
each month. (A.l)

2. Time between any cut-off of input processing
for a pay period and date of payment to indi-
vidual members must be long enough for accurate
preparation of the payroll, including the appli-
cation of suitable control procedures and the
correction and adjustment of errors. (A. 3)

3. Payroll payments will be made by check unless
there are obvious benefits in cash payments.
The "composite check" procedure prescribed in •

Treasury Transmittal Letter No. 53, September
28, 1970, will be applied to the maximum
extent feasible. (A.I4.)

[(., Systems development will be aimed at reducing
the manual and clerical workload of operational
military units and organizations, substituting
centralized and computerized processing, wherever
feasible. (A. 10)

101

5* Transactions common to military pay and personnel
systems will be input using single source, source
data automation techniques and will be recorded in
both systems on the same basis, wherever feasible.
(A. 13)

6. In addition to periodic, formal internal audit of
the operating system, responsible commanders will
monitor critical input, processing, and output
points, to assure security and integrity of the
system. (A. 1)4.)

7. Accounting for leave earned, leave taken, and
leave lost will be included in JUMPS. Data
needed to review and approve individual requests
for leave will be maintained at appropriate
operational levels. (3.2)

8. For local administration of pay and leave opera-
tions, a personal financial record will be main-
tained. It will be used as a temoorary file of
input documents affecting members' pay, including
allotment authorizations and will be transferred
to new duty stations on PCS of the member.
Reference will be made to this document by
disbursing officers making payments to transients.
(II. A. 2)

9. Individual statements of account will be prepared
for each member monthly. These statements will be
called "Leave and Earnings Statements." They
will be produced solely from data contained in
and controlled by the pay account maintained by
the central site. (II.A.Ij.)

10. The Leave and Earnings Statement will contain, as
a minimum, the following specific elements of
information: Here follows a detailed listing
of these elements of information, including, for
example, date of preparation, social security
number, name, all continuing and one-time entitle-
ments and deductions. (II.A.Ij. a)

11. Status changes and actions affecting members 1 pay
accounts may originate at the members' site and
enter the pay system via the local finance or
disbursing officer having custody of the member's
personal financial record or may enter the system
through other systems (e.g., the personnel system).

102

In either case, the input will be forwarded to
the central site in machine-readable form where
practicable, supported by human-readable docu-
mentation. Control procedures will be developed
to ensure receipt by the central site of all data
transmitted by the originator and the reject and
suspense of unacceptable data. (II.B.l)

12. Input procedures and techniques will apply the
principles of source data automation. Such
applications may vary due to the nature of the
input action and environmental conditions, and
will be flexible, permitting continuing improve-
ments in such techniques. (II. B. 2)

13. Where certain special or incentive pay entitlements
require reports of performance, in a certain time
frame, or reports of duty at a particular location,
following initial certification, these reports
of performance \-j111 be on an exception basis (cases
where entitlement requirements are not met), for
those personnel normally authorized such payments.
Authorities responsible for initial certifications
and recurring exceptions reports will ensure main-
tenance of adequate and auditable records support-
ing such certifications and reports. (II. B. 5)

Ik. The system must have a base of accurate, reliable,
and timely input. Authorities inputting data to
the military pay system are responsible for the
propriety and accuracy of such inputs. Pecuniary
accountability for improper payments will inhere
in the finance or disbursing officer making pay-
ments, in accordance with applicable statutes.
(II. B. 6)

15. Where source documentation is read directly by EDP
equipment (by scanning at an intermediate or
centralized site, for example) it must be forwarded
as it becomes available, consistent with available
mail/courier service. In such a situation, copies
of the documentation will be retained locally in
the finance or other local office accessible to
the disbursing officer until receipt of the Leave
and Earnings Statements from the central site, at
which time the locally retained documentation may
be destroyed. (II. B. 8)

103

16. To the extent of local capability, codes, trans-
actions, status changes, and other input data
will be pre-edited for validity before communi-
cation to the central site. (II. B. 9)

17. For regular, recurring semi-monthly payments,
Military Services will pay locally or centrally,
or by a combination of these methods using
Treasury check as the payment medium to the
maximum extent. (II.D.2)

18. For members paid locally, the regular pay date may
be rescheduled, when considered operationally
desireable by the local commander. (II.D.3)

19. Special payments to individual members on a local
basis, such as partial pay or casual pay, will
be made as the need arises and will generally
be limited to emergency or hardship cases and to
special categories of personnel, such as recruits,
in-transit personnel or personnel joining or
being detached from a duty station or activity.
(II.D.I+)

20. Members will be given the option of having a portion
of their net pay due carried forward as an unpaid
item due in their accounts. (II. D. 5)

21. Input to the pay accounts must be complete and
accurate and adequate controls to assure correct
processing must be established for accurate and
complete accounting and reporting. Care will be
taken to program a complete system of checks and
balances from input through final output. (II.H)

22. When input to the centralized site is released
from the local level, unaccompanied by supporting
documentation, it will be suspended to ensure
transmittal of the required documentation. Such
suspense file will be a subject for internal
reviews and audits. (II.H.l)

23. Actions rejected by the system will be controlled
so that appropriate follow-up action can be taken.
(II.H. 3)

101;

Thesis 17' i F9
D5735 Di franco

Use of hierarchi ca 1

de compos' t i on in

computer systems de-
sign.

9 Kf-'.' "t
I4SEP78

Oli.'LAY
25014

\Z AU^bO 2 6 5 8 8
2 7 888

25 JUL 66
t -r t -5 o

Thesis

D5735

171159
Di franco

Use of hierarchical
decomposition in

computer systems de-
sign.

